Design of a peristaltic crawling robot using 3-D link mechanisms
by Norihiko Saga; Satoshi Tesen; Hiroki Dobashi; Jun-ya Nagase
International Journal of Biomechatronics and Biomedical Robotics (IJBBR), Vol. 2, No. 2/3/4, 2013

Abstract: In disaster areas, rescue work conducted by humans is extremely difficult. Therefore, rescue work using rescue robots in place of humans is attracting attention. This study specifically examines peristaltic crawling, the movement mechanism of an earthworm, because it can enable movement through narrow spaces and because it can provide stable movement according to various difficult environments. We developed a robot using peristalsis characteristics and derived a robot motion pattern using Q-learning, a mode of reinforcement learning. Moreover, we designed each part of the robot based on required specifications and thereby developed a real robot. We present results of motion experiments assessing the robot's level ground movement.

Online publication date: Fri, 18-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomechatronics and Biomedical Robotics (IJBBR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com