Lyapunov function-based non-linear control for two-wheeled mobile robots
by Zareena Kausar; Karl Stol; Nitish Patel
International Journal of Biomechatronics and Biomedical Robotics (IJBBR), Vol. 2, No. 2/3/4, 2013

Abstract: This article presents a non-linear feedback control framework for two-wheeled mobile robots. The approach uses a constructive Lyapunov function which allows the formulation of a control law with asymptotic stability of the equilibrium point of the system and a computable stability region. The dynamic equations are simplified through normalisation and partial feedback linearisation. The latter allows linearisation of only the actuated coordinate. Description of the control law is complemented by the stability analysis of the closed loop dynamics of the system. The effectiveness of the method has been illustrated by its good performance and less control demand through simulations conducted for two control tasks: upright position stabilisation and velocity tracking for a statically unstable two wheeled mobile robot.

Online publication date: Fri, 18-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomechatronics and Biomedical Robotics (IJBBR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com