Fourth generation detour matrix-based topological descriptors for QSAR/QSPR - Part-2: application in development of models for prediction of biological activity
by Rakesh Kumar Marwaha; A.K. Madan
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 7, No. 1, 2014

Abstract: Augmented path eccentric connectivity topochemical indices (reported in part-1 of the manuscript) along with 42 diverse non-correlating molecular descriptors (shortlisted from a large pool of 2D and 3D MDs) were successfully utilised for the development of models through decision tree, random forest and moving average analysis for the prediction of antitubercular activity of aza and diazabiphenyl analogues of active compound (6S)-2-Nitro-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3] oxazine (PA-824). The statistical significance of the proposed models was assessed through overall accuracy of prediction, intercorrelation analysis, sensitivity, specificity and Matthew's correlation coefficient (MCC). The accuracy of prediction of the proposed models varied from a minimum of 81% to a maximum of ∼99%. High accuracy of prediction amalgamated with high MCC values clearly indicates robustness of the proposed models. The said models offer a vast potential for providing lead structures for the development of potent antitubercular drugs.

Online publication date: Tue, 21-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com