Determination of horizontal in-situ stresses and natural fracture properties from wellbore deformation
by Shike Zhang; Shunde Yin
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 7, No. 1, 2014

Abstract: Accurate and low-cost information on in-situ stresses and fracture properties is critical in reducing well costs and increasing well recoveries. In this paper, a hybrid model based on the displacement back analysis is proposed for determining the in-situ stress magnitudes and fracture properties at the wellbore scale using wellbore displacements. The new methodology is an integration of artificial neural network (ANN), genetic algorithm (GA), and numerical analysis. An ANN is used to map the non-linear relationship between the maximum and minimum horizontal in-situ stresses (σH, σh) and natural fracture properties (e.g., joint angle, θ, aperture, a1 and a2, and spacing, s) and the wellbore displacements. A forward modelling (UDEC) is used to compute wellbore displacements as a function of horizontal in-situ stresses and natural fracture properties, and to create the necessary training and testing samples for ANN. The set of unknown horizontal in-situ stresses and natural fracture properties at wellbore scale are searched in a global space using GA based on the objective function. Results of the numerical experiment show that the hybrid ANN-GA model based on the displacement back analysis can effectively recognise the horizontal in-situ stresses and natural fracture properties from wellbore deformation during drilling. [Received: September 25, 2012; Accepted: November 27, 2012]

Online publication date: Sat, 24-May-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com