Prediction of material removal rate due to laser beam percussion drilling in aluminium sheet using the finite element method
by Sanjay Mishra; Vinod Yadava
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 14, No. 4, 2013

Abstract: Laser beam percussion drilling is used for the rapid fabrication of small diameter hole in a wide variety of engineering materials. A computational thermal model to predict the material removal rate will help to enhance the cost effectiveness of LBPD process especially for material like aluminium which has very low machinability during laser beam machining due to its adverse optical and thermal properties. An axisymmetric finite element method-based thermal model incorporating the temperature dependent thermal and optical properties as well as the phase change phenomena has been developed to determine the transient temperature distribution in thin aluminium sheet, which is further used to obtain the material removal rate (MRR). The predicted values of MRR have been compared with the self conducted experimental results. It was found that the peak power has the dominant effect on MRR followed by thickness of sheet, pulse width and pulse frequency.

Online publication date: Thu, 26-Dec-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com