Reviewing the factors affecting regenerative molten carbonate fuel cells
by Pier Paolo Prosini
International Journal of Nuclear Hydrogen Production and Applications (IJNHPA), Vol. 2, No. 4, 2013

Abstract: To evaluate the possibility to use molten carbonate fuel cell technology for high temperature electrolysis, the factors affecting the electrode reactions have been examined by surveying the published literature. The literature results showed that H2, CO2 and CO evolved as cathode off-gases and O2 as anode gas. At low polarisation, the discharge of oxide ions to O2 was the only anodic process; increasing polarisation and current densities, the discharge of carbonate ions contributed to the anodic reaction and CO2 was concurrently produced at the anode. Molten Li2CO3 at 850°C-900°C readily absorbed the produced CO2 (the CO2 concentration in the anode compartment was lower than 0.5%). In this condition, titanium cathode enhanced CO production. The co-production of CO represents a serious disadvantage to power a polymer electrolyte membrane fuel cell. On the other hand, the production of syngas could offer attractive applications such as synfuel production and carbon dioxide regeneration.

Online publication date: Sat, 12-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Hydrogen Production and Applications (IJNHPA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com