Reducing energy consumption in distributed computing through economic resource allocation
by Timothy M. Lynar; Simon; Ric D. Herbert; William J. Chivers
International Journal of Grid and Utility Computing (IJGUC), Vol. 4, No. 4, 2013

Abstract: Energy consumption is an increasingly important consideration in computing. High-performance computing environments consume substantial amounts of energy and the cost of energy is increasing. We explore the possibility of reducing the energy consumption of a grid of heterogeneous computers through appropriate resource allocation strategies. We examine a number of possible grid workload scenarios and analyse the impact of different resource allocation mechanisms on energy consumption and time taken to execute tasks. We perform this analysis first on a cluster of heterogeneous nodes and then scale up the experiment to a grid of multiple clusters. Our results show that different resource allocation mechanisms perform better under different scenarios, and that selection of the resource allocation mechanism can significantly alter grid energy consumption.

Online publication date: Thu, 18-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Grid and Utility Computing (IJGUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com