Assessing structural health of helicopter fuselage panels through artificial neural networks hierarchies
by Antonio Candelieri; Raul Sormani; Gaia Arosio; Ilaria Giordani; Francesco Archetti
International Journal of Reliability and Safety (IJRS), Vol. 7, No. 3, 2013

Abstract: Online assessment of the structural health of aircrafts is crucial both in military and civilian settings. In this paper, Artificial Neural Networks (ANNs) are exploited to obtain a reliable system performing two tasks: diagnosis and prognosis. Diagnosis is devoted to (a) detect a crack, (b) identify the component of the panel involved (bay or stringer) and (c) estimate crack centre and size. Prognosis aims at estimating the evolution of the crack and the Remaining Useful Life (RUL). Training of the ANNs is performed on data sets built through finite elements simulation. Two different ANN hierarchies are presented for diagnosis. Crack evolution is performed for cracks on bay and stringer, separately. Two ANNs are used to estimate the parameters of a crack propagation model (NASGRO equation) for RUL prediction.

Online publication date: Tue, 30-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com