Development of a finite element model to study the torsional fracture strength of an analogue tibia with bicortical holes
by Kimberly Reuter; Alexander Chong; Viswanathan Madhavan; Paul H. Wooley; Mark Virginia; Hamid M. Lankarani
International Journal of Experimental and Computational Biomechanics (IJECB), Vol. 2, No. 2, 2013

Abstract: Fractured bones are often stabilised with orthopaedic fracture plates and screws until healed. If the plates and screws are removed, the vacant screw holes introduce a potential site for re-fracture. This study is aimed at simulating a laboratory torsional fracture test of a composite analogue tibia with vacant screw holes using a finite element (FE) model. This FE model is set up the same as the experimental torsion test, with a section from the distal portion of the tibia. The FE model contains over 35k second-order brick elements and nearly 165k nodes. It utilises an isotropic linear elastic material law with material properties obtained from the analogue tibia manufacturer. Comparisons between the experimental model and the FE model consider the fracture torque, fracture angle, and specific torsional stiffness. Stress contours of the FE model are compared to the fracture path of the experimental model. The FE model predicts the fracture location and a fracture torque within the standard deviation of that determined experimentally.

Online publication date: Sat, 12-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Experimental and Computational Biomechanics (IJECB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com