Characterisation of friction reduction with tangential ultrasonic vibrations using a SDOF model
by Shravan Bharadwaj; Marcelo J. Dapino
International Journal of Vehicle Design (IJVD), Vol. 63, No. 2/3, 2013

Abstract: Active control of friction between sliding surfaces is of fundamental and practical interest in automotive applications. It has been shown that the friction force between sliding surfaces decreases when ultrasonic vibration is superimposed on the sliding motion. This principle can be applied to systems in which solid state lubrication or friction modulation is advantageous. The ultrasonic vibration may be applied longitudinally or normal to the direction of motion. A number of friction models have been considered in order to analyse this phenomenon. The degree of friction reduction has been shown to depend on the ratio of the sliding velocity to the vibration velocity. Since friction is a system response, it is necessary to include system dynamics in the analysis of ultrasonic lubrication. A nonlinear single-degree-of-freedom model is formulated and numerically approximated to quantify the effect on friction reduction of control force, intrinsic coefficient of friction, mass load, tangential contact stiffness at the sliding interface, and system stiffness. Model results are in close agreement with experimental measurements.

Online publication date: Thu, 16-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com