Simulation of human renal system
by Haydar A. Mahmood; Nazeih M. Botros
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 6, No. 3, 2013

Abstract: The goal of this study is to develop a synthesisable computer-simulated model that mimics the function of a simplified renal system. Hardware description language has been used to simulate the model. In future phase of this study, the model will be realised on an electronic chip such as 'Field Programmable Gate Arrays'. The simulated model introduces a dynamic representation of the human body fluid balance under normal conditions and displays the change of urine flow with the amount of ingested water. The inputs of the model are average values of parameters extracted from the renal system. Some of these parameters and variables are: arterial pressure, daily ingested fluid volume, daily ingested sodium, daily ingested potassium, extracellular fluid volume, intracellular fluid volume, renin concentration, angiotensin II concentration, and aldosterone concentration. Our results show that the output of the model is in agreement with those of the literatures.

Online publication date: Thu, 18-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com