Slightly hydrophobic silica nanoparticles for enhanced oil recovery: interfacial and rheological behaviour
by Mohammad Zargartalebi; Riyaz Kharrat; Nasim Barati; Ali Zargartalebi
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 6, No. 4, 2013

Abstract: This paper is aimed at studying AEROSIL® R816 nanoparticle behaviour to see if it has enough feasibility to be used as a chemical agent in enhanced oil recovery (EOR) processes. The main focus is on interfacial and rheological behaviour of this particle in aqueous and polymeric media. Interfacial tension measurements between aqueous nanoparticle suspensions and oil showed that AEROSIL® R816 particles were able to reduce the interfacial tension between water and oil to half of its original value. This property led to development of stabilised oil in water emulsions. Moreover, viscosity measurements showed that AEROSIL® R816 had a great ability in rheology modification of aqueous solutions. The solution viscosity was studied as a function of nanoparticle concentration and shear rate. It was seen that viscosity rose as the nanoparticle concentration was increased. From the standpoint of shear dependency, two regions of shear thinning behaviour were observed for different shear rate regions. Finally, by dissolving a fixed amount of a low molecular weight polyacrylamide into nanoparticle suspensions of different concentrations, the stability of R816 suspensions was significantly improved. This addition also resulted in almost considerable enhancement of nanoparticle thickening property. [Received: January 15, 2012; Accepted: July 17, 2012]

Online publication date: Wed, 29-Jan-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com