A study of the annealing atmosphere effects on the electrical properties of graphene-incorporated direct-patternable ZnO thin films
by Hyuncheol Kim; Chang-Sun Park; Hyung-Ho Park; Seungsu Baek
International Journal of Nanotechnology (IJNT), Vol. 10, No. 8/9, 2013

Abstract: An improvement in the electrical properties of the films is absolutely required for the application of ZnO thin film in electrical devices. And the conventional dry etching process is accompanied by the generation of physical defects, degradation of the properties. The electrical property of direct-patternable, graphene-incorporated ZnO thin film prepared by photochemical solution deposition was improved by N2 atmosphere annealing. Direct-patterning of graphene-incorporated ZnO thin films by photochemical solution deposition was performed without a photoresist or etching process. The transmittance of graphene-incorporated ZnO thin films was similar to ZnO thin film. The transmittance of ZnO thin film was unaffected by annealing atmosphere such as air or N2. The incorporation of graphene slightly decreased the crystallinity of the ZnO thin films and annealing atmosphere did not affect to the crystallinity of ZnO thin films. The resistivity was decreased due to the mobility enhancement because of the p-bond nature of the graphene surface. In addition, N2 atmosphere annealing decreased the resistivity of ZnO thin film than O2 atmosphere annealing due to decreasing of oxidation on the surface. These results suggest that a micro-patterned system can be simply fabricated at low cost and the electrical properties of ZnO thin films can be improved by graphene incorporation and N2 atmosphere annealing.

Online publication date: Thu, 01-Aug-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com