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Abstract: The study is to show a nice interplay among ℓ-valued approximation 
operator (ℓ is a complete orthomodular lattice) on an ℓ-valued approximation 
space, ℓ-valued topology and ℓ-valued automaton. We begin by noting  
that each ℓ-valued approximation space is associated with an ℓ-valued 
approximation operator, which turns out to be Kuratowski saturated ℓ-valued 
closure operator on X, if the ℓ-valued relation associated with ℓ-valued 
approximation space is ℓ-valued reflexive and ℓ-valued transitive. The ℓ-valued 
approximation operator gives rise to a saturated ℓ-valued topology on X. It is 
shown that the existence of dual ℓ-valued topology depends on the distributivity 
of associated lattice. The observations made so far are applied to ℓ-valued 
automata. 
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1 Introduction 

The concept of ℓ-valued automata (automata theory based on quantum logic) is 
introduced in Ying (2000). The quantum logic can be understand as a logic whose truth 
value set is an orthomodular lattice, and an element of orthomodular lattice is assigned to 
each transition of an automaton (Ying, 2000). In Qiu (2004), it has been shown that the 
concepts of ℓ-valued source and ℓ-valued successor operators associated with ℓ-valued 
automata, induced ℓ-valued topologies on the state-set of an ℓ-valued automaton. The 
relationship between ℓ-valued topologies depends on the distributivity of the associated 
lattice. In this note, we consider an ℓ-valued approximation operator on an ℓ-valued 
approximation space X [i.e., a set X with an ℓ-valued reflexive and ℓ-valued transitive 
relation R on it, as introduced in Srivastava and Tiwari (2003)], which turns out to be a 
Kuratowski saturated ℓ-valued closure operator, and hence gives rise to a saturated  
ℓ-valued topology on X. Another ℓ-valued topology induced by an ℓ-valued 
approximation operator on X is defined in a natural way with the help of ℓ-valued relation 
R, which turns out to the dual ℓ-valued topology, when the associated lattice is 
distributive. Lastly, these observations are apply to ℓ-valued automata. 

2 Preliminaries 

In this section, we recall some basic concepts related to complete orthomodular lattices 
and ℓ-valued topologies. For the notations on the semantic aspect of quantum logic (cf. 
Chiara, 1986). 

Definition 2.1 (Ying, 2000): A complete orthomodular lattice is a 7-tuple ℓ = (L, ≤, ∧, ∨, 
⊥, 0, 1), where, (L, ≤, ∧, ∨, ⊥, 0, 1) is complete lattice, in which 0 and 1 are respectively 
the least and greatest elements of L, ≤ is the partial ordering in L, ∀A ⊆ L, ∧A and ∨A are 
respectively the greatest lower bound and the least upper bound of A, ⊥ is an unary 
operator (called orthocomplement) on L, such that ∀a, b ∈ L, 

1 a ∧ a⊥ = 0, a ∨ a⊥ = 1 

2 a⊥⊥ = a 

3 a ≤ b ⇒ b⊥ ≤ a⊥ 

4 a ∧ (a⊥ ∨ (a ∧ b)) ≤ b. 

Definition 2.2 (Ying, 2000): Let X be a non-empty set. A mapping A: X → L is called an 
ℓ-valued subset of X. 

For a non-empty set X, LX will denote the set of all ℓ-valued subsets of X. 
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Definition 2.3 (Ying, 2000): For given two ℓ-valued subsets A and B of X |=ℓ A ⊆ B if A(x) 
≤ B(x), ∀x ∈ X. For given ℓ-valued sets (Ai)i∈I, the ℓ-valued sets ( )i I iA∈∪  and ( )i I iA∈∩  
are respectively given by 

( )

( )

( ) ( ), ,

( ) ( ), .

def
i I ii I i

def
i I ii I i

x A x x XA

x A x x XA

∈∈

∈∈

= ∀ ∈

= ∀ ∈

∪

∩

Í

Ï
 

Definition 2.4 (Qiu, 2004): Let X be a non-empty set and τ ⊆ LX. Then τ is an ℓ-valued 
topology on X if 

1 φ, X ∈ τ 

2 if A, B ∈ τ, then A ∩ B ∈ τ 

3 if Ai ∈ τ, i ∈ I, then .i I iA τ∈ ∈∪  

The pair (X, τ) is called an ℓ-valued topological space and ℓ-valued subset of X in τ are 
called ℓ-valued open sets. The complement of an ℓ-valued open set is called ℓ-valued 
closed set. 

Definition 2.5 (Qiu, 2004): A mapping c: LX → LX is called an ℓ-valued closure operator 
if, ∀A, B ∈ LX, 

1 |=ℓ c(φ) ≡ φ 

2 |=ℓ A ⊆ c(A) 

3 |=ℓ c(A ∪ B) ≡ c(A) ∪ c(B) 

4 |=ℓ c(c(A)) ≡ c(A). 

An ℓ-valued interior operator can be introduced similarly. 

3 ℓ-valued approximation operators and associated ℓ-valued topologies 

In this section, we indicate that study of an ℓ-valued topology can be carried out much on 
the same lines as done in Srivastava and Tiwari (2003), with the fact that the existence of 
dual topology depends on the distributivity of lattice. The concept of ℓ-valued 
approximation operators given in this section is similar to the concept given in She and 
Wang (2009), with the difference that instead of using residuated lattice, we use complete 
orthomodular lattice. We shall begin with the following definition. 

Definition 3.1: An ℓ-valued relation R on a set X is a map R: X × X → L. The ℓ-valued 
relation R is called 

1 ℓ-valued reflexive if R(x, x) = 1, ∀x ∈ X 

2 ℓ-valued symmetric if R(x, y) ≡ R(y, x), ∀x, y ∈ X 

3 ℓ-valued transitive if ( ,  ) { ( ,  ) ( ,  ) : },  ,  .R x z R x y R y z y X x z X≥ ∧ ∈ ∀ ∈Í  

 



   

 

   

   
 

   

   

 

   

   88 S.P. Tiwari et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Definition 3.2: 

1 A pair (X, R) is called an ℓ-valued approximation space if X is a set and R is an  
ℓ-valued relation on X. 

2 For an approximation space ( ,  ),  : ,X XX R c L L→  defined as, 

{ }( )( ) , ,( , ) ( ) :
def Xc A x A L x XR x y A y y X= ∈ ∈∧ ∈Í  

 is called an ℓ-valued approximation operator on X (induced by R). 

Remark 3.1: What we have named above as an ℓ-valued approximation operator on X, is 
a natural generalisation of an upper approximation operator (Yao, 1996). A natural 
generalisation of lower approximation operator to ℓ-valued lower approximation operator 
can also be given. However, our interest is in only the ℓ-valued topology which ℓ-valued 
upper approximation operator induces on X. We have chosen the name ℓ-valued 
approximation operator rather than an ℓ-valued upper approximation operator. 

Proposition 3.1: An ℓ-valued relation R on a non-empty set X is ℓ-valued reflexive and  
ℓ-valued transitive if and only if (the associated) ℓ-valued approximation operator c  is a 
Kuratowski saturated1 ℓ-valued closure operator on X. 

Proof: Let R be an ℓ-valued reflexive and ℓ-valued transitive relation on X. To show that 
c  is an ℓ-valued closure operator on X, we need to verify the following conditions: ∀A, 
Aj ∈ LX, j ∈ J: 

1 |=ℓ c(φ) ≡ φ 

2 | ( )A c A= ⊆  

3 | ( { : }) { ( ) : }j jc A j J c A j J= ∈ ≡ ∈∪ ∪  

4 | ( ( )) ( ).c c A c A= ≡  

(1) is obviously satisfied and (2) follows using the reflexivity of R. (3) is satisfied, since 
for x ∈ X and Aj ∈ LX, j ∈ J, ( { : })( ) { ( ,  ) ( { ( ) : }) :j jc A j J x R x y A y j J∈ = ∧ ∈∪ Í Í  

} { { ( ,  ) ( ) : } : } { ( ) : }( ).j jy X R x y A y y X j J c A j J x∈ = ∧ ∈ ∈ = ∈∪Í Í  Finally, (4) is also 
satisfied by using the transitivity of R as: ∀A ∈ LX, and ∀x ∈ X, ( ( ))( ) { ( ,  )c c A x R x y= Í  

( ) : } { ( ,  ) ( { ( ,  ) ( ) : }) : } {( { ( ,  )c A y y X R x y R y z A z z X y X R x y∧ ∈ = ∧ ∧ ∈ ∈ = ∧Í Í Í Í  
( ,  ) : }) ( ) : } { ( ,  ) ( ) : } ( )( ).R y z y X A z z X R x z A z z X c A x∈ ∧ ∈ ≤ ∧ ∈ =Í  

Conversely, let c  be an ℓ-valued closure operator on X and x ∈ X. Then 1 = 1x(x) ≤ 
(1 )( ).xc x  Thus, (1 )( ) 1,xc x =  hence { ( ,  ) 1 ( ) : } 1 ( ,  ).xR x y y y X R x x∧ ∈ = =Í  Hence,  

R is an ℓ-valued reflexive. Next, let x, z ∈ X. Then ( (1 ))( ) (1 )( ),z zc c x c x≤  i.e., 
{ ( ,  ) (1 )( ) : } (1 )( ),z zR x y c y y X c x∧ ∈ ≤Í  or that { ( ,  ) ( { ( ,  ) 1 ( ) : })zR x y R y u u u X∧ ∧ ∈Í Í  

: } { ( ,  ) 1 ( ) : },zy X R x y y y X∈ ≤ ∧ ∈Í  or that { ( ,  ) ( ,  ) : } { ( ,  )R x y R y z y X R x y∧ ∈ ≤Í Í  
1 ( ) : }.z y y X∧ ∈  Thus, { ( ,  ) ( ,  ) : } ( ,  ).R x y R y z y X R x z∧ ∈ ≤Í  Hence, R is an ℓ-valued 

transitive also. 
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As a consequence, the ℓ-valued approximation operator, say c  on X associated with 
an ℓ-valued approximation space (X, R), induces a saturated ℓ-valued topology on X, 
which we shall denote as τ(X). 

Proposition 3.2: Let R be an ℓ-valued reflexive and ℓ-valued transitive relation on X and 
R* be another ℓ-valued relation on X such that R*(x, y) ≡ R(y, x). Then R* is also an  
ℓ-valued reflexive and ℓ-valued transitive relation on X. 

Proof: Let R* be ℓ-valued relation on X such that R*(x, y) ≡ R(y, x), ∀x, y ∈ X. We have to 
show that R* is an ℓ-valued reflexive and ℓ-valued transitive relation on X, i.e.,  
R*(x, x) = 1 and R*(x, z) ≥ R(x, y) ∧ R(y, z), ∀x, y, z ∈ X. Now, R*(x, x) ≡ R(x, x) = 1. 
Again, R*(x, y) ≡ R(y, x) and R*(y, z) ≡ R(z, y). Thus, R*(x, z) ≥ R(z, x) ≥ R(z, y) ∧ R(y, x) 
= R*(y,; z) ∧ R*(x, y) = R*(x, y) ∧ R*(y, z). Hence, R* is an ℓ-valued reflexive and ℓ-valued 
transitive relation on X. 

Remark 3.2: R* being ℓ-valued reflexive and ℓ-valued transitive relation, it will induce 
another ℓ-valued approximation operator, say *,c  on X. We shall denote by τ*(X), the  
ℓ-valued topology on X induced by *.c  

Recall the following from Qiu (2004). 

Proposition 3.3: The following statements are equivalent: 

1 L satisfies the distributive law: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), ∀a, b, c ∈ L. 

2 ∀a, b ∈ L, b⊥ ∨ (b ∧ a) ≥ a. 

3 ∀a, b ∈ L, b ∧ (b⊥ ∨ a) ≤ a. 

The relationship between the ℓ-valued topologies τ(X) and τ*(X) are given by the 
following proposition. 

Proposition 3.4: If L is a distributive lattice then the ℓ-valued topologies τ(X) and τ*(X) 
are dual, i.e., A ∈ LX is τ(X)-open if and only if A is τ*(X)-closed. 

Proof: Let A be τ(X)-open. Then | ( ) .c A A⊥ ⊥= ≡  We show that A is τ*(X)-closed, for 
which it suffices to show that *| ( ) .c A A= ⊆  For y ∈ X, R(y, x) ∧ A⊥(x) ≤ A⊥(y). Now, 
[R*(x, y)]⊥ ∨ A⊥(y) ≥ [R*(x, y)]⊥ ∨ {R(y, x) ∧ A⊥(x)} = [R(y, x)]⊥ ∨ {R(y, x) ∧ A⊥(x)} ≥ 
A⊥(x) ⇒ [R*(x, y)] ∧ A(y) ≤ A(x). Thus, *| ( ) .c A A= ⊆  It is obvious that *| ( ).A c A= ⊆  
This shows that A is τ*(X)-closed. 

Conversely, let A be τ*(X)-closed. Then | ( ) .c A A⊥ ⊥= ⊆  We show that A is  
τ(X)-open, for which we only need to show that | ( ) .c A A⊥ ⊥= ⊆  It is obvious that 
| ( ).A c A⊥= ⊆  Also, for all y ∈ X, R*(y, x) ∧ A(x) ≤ A(y). Now, [R(x, y)]⊥ ∨ A(y) ≥  
[R(x, y)]⊥ ∨ {R*(y, x) ∧ A(x)} = [R(x, y)]⊥ ∨ {R(x, y) ∧ A(x)} ≥ A(x) ⇒ [R(x, y)] ∧ A⊥(y) ≤ 
A⊥(x). Thus, | ( ) .c A A⊥ ⊥= ⊆  Hence, A is τ(X)-open. 
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4 ℓ-valued topologies for ℓ-valued automata 

In this section, we apply the observations made so for to ℓ-valued automata. We 
introduce ℓ-valued topologies on the state-set of an ℓ-valued automaton, which turn out 
the same as introduced by Qiu (2004). Lastly, we introduce the concept of ℓ-valued core 
of an ℓ-valued automaton, on the lines of Bavel (1968), and Srivastava and Tiwari (2002). 

Throughout this section, L stands for a distributive complete orthomodular lattice. 

Definition 4.1 (Qiu, 2004): An ℓ-valued automaton is a triple M = (Q, X, δ), where Q is a 
non-empty set (of states of M), X is a monoid (the input monoid of M) whose identity 
shall be denoted as e, and δ is an ℓ-valued subset of Q × X × Q, i.e., a map δ: Q × X × Q 
→ L such that ∀p, q ∈ Q, 

1 if
( , , )

0 if
q p

δ q e p
q p
=⎧

= ⎨ ≠⎩
 

and, δ(q, xy, p) = ∨{δ(q, x, r) ∧ δ(r, y, p): r ∈ Q}, ∀x, y ∈ X. 

Definition 4.2 (Qiu, 2004): Let (Q, X, δ) be an ℓ-valued automaton and A ∈ LQ. Then  
ℓ-valued source and ℓ-valued successor of A are respectively defined as follows: 

{ }

{ }

( )( ) , and( ) ( , , ) : ,

( )( ) ,( ) ( , , ) : ,
.

def

def

σ A q A p d q x p p Q x X

s A q A p δ p y q p Q y X
q Q

= ∨ ∧ ∈ ∈

= ∨ ∧ ∈ ∈

∀ ∈

 

Let (Q, X, δ) be an ℓ-valued automaton. Consider an ℓ-valued relation R on Q given by 

( ){ }1( , ) ( ), , .
def

pR p q s q p q Q= ∀ ∈  

We can show that ℓ-valued relation R on Q is ℓ-valued reflexive and ℓ-valued transitive. 
To show R is ℓ-valued reflexive, we need to show that R(p, p) = 1. Now, R(p, p) = 
s(1{p})(p) = ∨{1{p}(q) ∧ δ(q, x, p): q ∈ Q, x ∈ X} = δ(p, e, p) = 1. Thus, R is ℓ-valued 
reflexive. To show R is ℓ-valued transitive. We need to show that R(p, r) ≥ R(p, q) ∧  
R(q, r), ∀p, q, r ∈ Q, i.e., s(1{p})(r) ≥ s(1{p})(q) ∧ s(1{q})(r). Now s(1{p})(q) ∧ s(1{q})(r) = 
[∨{1{p}(r) ∧ δ(r, x, q): r ∈ Q, x ∈ X}] ∧ [∨{1{q}(p) ∧ δ(p, y, r): p ∈ Q, y ∈ X}] = 
∨{(1{p}(r) ∧ δ(r, x, q)) ∧ (∨{1{q}(p) ∧ δ(p, y, r)): r, p ∈ Q, x, y ∈ X} = [∨{δ(p, x, q)}: x ∈ 
X] ∧ [∨{δ(q, y, r)}: y ∈ X] = ∨[δ(p, x, q) ∧ δ(q, y, r): x, y ∈ X] = ∨{δ(p, z, r): z ∈ X} = 
∨{1{p}(p) ∧ δ(p, z, r): z ∈ X} = s(1{p})(r) = R(p, r). Thus, R(p, r) = R(p, q) ∧ R(q, r). 
Hence, R is ℓ-valued transitive. 

So, as in Definition 3.2, there is an ℓ-valued approximation operator on Q given by 

( ){ }{ }1( )( ) ( ) ( ) : , , .
def Q

pc A q s q A p p Q A L q Q= ∧ ∈ ∀ ∈ ∀ ∈Í  

This operator c  must be a Kuratowski saturated ℓ-valued closure operator on Q 
(Proposition 3.1). Thus, c  induces an saturated ℓ-valued topology on Q, say τ(Q). 
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Remark 4.1: 

1 Let (Q, X, δ) be an ℓ-valued automaton. Similar to above, if we define another  

ℓ-valued relation R* on Q, given by *
{ }( ,  ) (1 )( ),  ,  .

def
pR p q σ q p q Q= ∀ ∈  Then  

R*(p, q) ≡ R(q, p) and so by Proposition 3.2, R* is also a ℓ-valued reflexive and  
ℓ-valued transitive relation on Q, and hence it will induce another ℓ-valued 
approximation operator, say *,c  on Q, which will induce an ℓ-valued topology  
on Q, say τ*(Q). 

2 It can be seen that | ( ) ( )c A s A= ≡  and *| ( ) ( ).c A σ A= ≡  Thus, the saturated  
ℓ-valued topologies τ(Q) and τ*(Q) on Q are precisely the ℓ-valued topologies ℑS and 
ℑR respectively, introduced in Qiu (2004). 

Definition 4.3 (Qiu, 2004): A ∈ LQ is called an ℓ-valued subautomaton of ℓ-valued 
automaton (Q, X, δ) if 

( ){ }( ) , .( , , ) : ,( , , ) ( )A q q Qδ q x p p Q x Xδ q x p A p⊥≤ ∧ ∀ ∈∨ ∈ ∈∧  

The following ℓ-valued topological characterisation of an ℓ-valued subautomaton is given 
in Qiu (2004). 

Proposition 4.1: A ∈ LQ is an ℓ-valued subautomaton of ℓ-valued automaton (Q, X, δ) if 
and only if |=ℓ s(A) ≡ A (i.e., A is ℓ-valued τ*(Q)-open). 

Definition 4.4: An ℓ-valued subautomaton A ∈ LQ is called ℓ-valued separated 
subautomaton of ℓ-valued automaton (Q, X, δ) if 

{ }( ) , .( ) ( , , ) : ,A p p QA q δ q x p q Q x X⊥≤ ∧ ∀ ∈∨ ∈ ∈  

Proposition 4.2: A ∈ LQ is an ℓ-valued separated subautomaton of ℓ-valued automaton  
M = (Q, X, δ) if and only if A is τ*(Q)-clopen (i.e., τ*(Q)-open as well as τ*(Q)-closed). 

Proof: Let A be ℓ-valued separated subautomaton of M, i.e., ∀p ∈ Q, A(p) ≤ ∧{A(q) ∨ 
δ(q, x, p)⊥: q ∈ Q, x ∈ X}. Then A⊥(p) ≥ ∨{A⊥(q) ∧ δ(q, x, p): q ∈ Q, x ∈ X}. Therefore, 
s(A⊥)(p) ≤ A⊥(p), or that |=ℓ s(A⊥) ⊆ A⊥, i.e., A⊥ is τ*(Q)-open. Hence, A is τ*(Q)-closed. 
Also, A being an ℓ-valued subautomaton, A is already τ*(Q)-open. Thus, A is τ*(Q)-clopen 
if and only if A is an ℓ-valued separated subautomaton of M. 

Before stating next, recall from Willard (1970), that a topological space (X, τ) is called R0 
if ∀x, y ∈ X, x ∈ cl(y) ⇒ y ∈ cl(x). A natural generalisation of this concept to an ℓ-valued 
topological space is as follows. 

Definition 4.5: An ℓ-valued topological space (X, τ) is called R0, if ∀x, y ∈ X, c(1{y})(x) ≤ 
c(1{x})(y). 

Definition 4.6 (Qiu, 2007): An ℓ-valued automaton (Q, X, δ) is called retrievable if ∀p,  
q ∈ Q and ∀x ∈ X, δ(p, x, q) ≤ ∨{δ(q, y, p): y ∈ X}. 

Proposition 4.3: An ℓ-valued automaton M = (Q, X, δ) is retrievable if and only if the  
ℓ-valued topology τ(Q) is R0. 
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Proof: Let M be retrievable. Then ∀p, q ∈ Q and ∀x ∈ X, δ(p, x, q) ≤ ∨{δ(q, y, p):  
y ∈ X}. We show that the ℓ-valued topology τ(Q) is R0, for which it suffices to show that 
s(1{p})(q) ≤ s(1{q})(p), ∀p, q ∈ Q. As s(1{p})(q) = ∨{δ(p, x, q): x ∈ X} and s(1{q})(p) = 
∨{δ(q, y, p): y ∈ X}, from the retrievability of M, s(1{p})(q) ≤ s(1{q})(p), ∀p, q ∈ Q. 
Therefore, the ℓ-valued topology τ(Q) is R0. Conversely, let τ(Q) be an R0 ℓ-valued 
topology on Q. Then ∀p, q ∈ Q, s(1{p})(q) ≤ s(1{q})(p), i.e., δ(p, x, q) ≤ δ(q, y, p), ∀x,  
y ∈ X and ∀p, q ∈ Q. Thus, M is retrievable. 

The following is an easy generalisation of the characterisation of R0-topological spaces. 

Definition 4.7: An ℓ-valued topological space (X, τ) is R0 if and only if each ℓ-valued 
open set contains the closure of each of its points. 

Proposition 4.4: An ℓ-valued automaton M = (Q, X, δ) is retrievable if and only if for any 
ℓ-valued subautomaton A ∈ LQ of M, |=ℓ σ(A) ≡ A. 

Proof: Let M be retrievable. Then τ(Q) is R0 ℓ-valued topology. Thus, for any ℓ-valued 
open subset A of Q, |=ℓ σ(A) ⊆ A. Hence, |=ℓ σ(A) ≡ A. Conversely, let A ∈ LQ be an  
ℓ-valued subautomaton of M such that |=ℓ σ(A) ≡ A. Then as A is τ(Q) ℓ-valued open and 
contains the closure of its each point, the ℓ-valued topology τ(Q) is R0. Thus, M is 
retrievable. 

Corollary 4.1: An ℓ-valued automaton M is retrievable if and only if each ℓ-valued 
subautomaton of M is separated. 

Proof: Follows from Propositions 4.1 and 4.4. 

We close this section by introducing the concept of ℓ-valued core of an ℓ-valued 
automaton and show that it turns out to be an ℓ-valued interior operator for ℓ-valued 
topology τ*(Q). It can be seen that some ℓ-valued automata theoretic results can be more 
conveniently expressed in terms of it, but as the arguments involved in proving theses are 
parallel to the ones used in Srivastava and Tiwari (2002), we have not carried out these 
exercises in this paper. 

Definition 4.8: Let (Q, X, δ) be an ℓ-valued automaton and A ∈ LQ. Then ℓ-valued core of 
A is defined as follows: 

{ }( )( ) , .( , , ) ( ) : ,
def

μ A q q Qδ p x q A p p Q x X⊥= ∧ ∀ ∈∨ ∈ ∈  

Proposition 4.5: Let (Q, X, δ) be an ℓ-valued automaton and A, B ∈ LQ. Then 

1 |=ℓ μ(φ) ≡ φ 

2 |=ℓ μ(A) ⊆ (A) 

3 |=ℓ μ(A ∩ B) ≡ μ(A) ∩ μ(B) 

4 |=ℓ μ(μ(A)) ≡ μ(A). 

Proof: (1) is obviously satisfied. Let q ∈ Q. Then μ(A)(q) 
def
=  ∧{δ(p, x, q)⊥ ∨ A(p):  

p ∈ Q, x ∈ X} ≤ δ(q, e, q)⊥ ∨ A(q) = A(q). Thus, μ(A)(q) ≤ (A)(q), showing that (2) is 
satisfied. (3) is satisfied, since μ(A ∩ B)(q) = ∧{δ(p, x, q)⊥ ∨ (A ∧ B)(p): p ∈ Q, x ∈ X} = 
∧ {(δ(p, x, q)⊥ ∨ A(p)) ∧ (δ(p, x, q)⊥ ∨ B(p)): p ∈ Q, x ∈ X} = (∧{δ(p, x, q)⊥ ∨ A(p):  
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p ∈ Q, x ∈ X}) ∧ (∧δ(p, x, q)⊥ ∨ B(p): p ∈ Q, x ∈ X}) = (μ(A) ∩ μ(B))(q). That (4) is also 
satisfied, since μ(μ(A))(q) = ∧{δ(p, x, q)⊥ ∨ μ(A)(p): p ∈ Q, x ∈ X} = ∧{δ(p, x, q)⊥ ∨ 
(∧{δ(r, y, p)⊥ ∨ A(r): r ∈ Q, y ∈ X}): p ∈ Q, x ∈ X} = ∧{(∧{δ(r, y, p)⊥ ∨ δ(p, x, q)⊥:  
p ∈ Q, y ∈ X, x ∈ X}) ∨ A(r): r ∈ Q} = ∧{δ(r, yx, q)⊥ ∨ A(r): y ∈ X, x ∈ X, r ∈ Q} = 
∧{δ(r, z, q)⊥ ∨ A(r): z ∈ X, r ∈ Q] = μ(A)(q). Thus, |=ℓ μ(μ(A)) ≡ μ(A). 

Proposition 4.6: Let (Q, X, δ) be an ℓ-valued automaton. The map μ: LQ → LQ, which 
sends each A ∈ LQ to μ(A), is an ℓ-valued interior operator on Q. 

Proof: Follows from Proposition 4.5. 

Proposition 4.7: Let (Q, X, δ) be an ℓ-valued automaton. Then the topology on Q given 
by the interior operator μ is precisely τ*(Q). 

Proof: To prove this proposition, it is enough to show that |=ℓ μ(A) ≡ (A) if and only if  
|=ℓ σ(A) ≡ A, ∀A ∈ LQ. First, let |=ℓ σ(A) ≡ A. Then ∀p ∈ Q, σ(A)(p) ≤ A(p), i.e., A(q) ∧ 
δ(p, x, q) ≤ A(p), ∀q ∈ Q and ∀x ∈ X. We show that |=ℓ μ(A) ≡ (A), for which it suffices 
to show that |=ℓ A ⊆ μ(A), i.e., A(q) ≤ μ(A)(q), ∀q ∈ Q, i.e., A(q) ≤ δ(p, x, q)⊥ ∨ A(p), ∀q 
∈ Q and ∀x ∈ X. Now, δ(p, x, q)⊥ ∨ A(p) ≥ δ(p, x, q)⊥ ∨ (A(q) ∧ δ(p, x, q)) = δ(p, x, q)⊥ ∨ 
(δ(p, x, q) ∧ A(q)) ≥ A(q). Thus, |=ℓ μ(A) ≡ (A). Conversely, let |=ℓ μ(A) ≡ (A). Then ∀q ∈ 
Q, A(q) ≤ μ(A)(q), i.e., A(q) ≤ δ(p, x, q)⊥ ∨ A(p). We show that |=ℓ σ(A) ≡ A, for which we 
only need to show that |=ℓ σ(A) ⊆ A, i.e., ∀p, q ∈ Q and ∀x ∈ X, A(q) ∧ δ(p, x, q) ≤ A(p). 
Now, A(q) ∧ δ(p, x, q) ≤ (δ(p, x, q)⊥ ∨ A(p)) ∧ δ(p, x, q) = δ(p, x, q) ∧ (δ(p, x, q)⊥ ∨ A(p)) 
≤ A(p). Thus, |=ℓ σ(A) ≡ A. 

5 Conclusions 

We have tried to establish the relationships among ℓ-valued approximation operator,  
ℓ-valued topology, and ℓ-valued automata, with the hope that this may offer some new 
insights in quantum computation. Possibly, much more can be done than what has been 
presented here. For example, it may possible to introduce an ℓ-valued topology on the 
state-set of product of two ℓ-valued automata. Also, as in Srivastava and Tiwari (2002), 
and Tiwari and Srivastava (2005), the decompositions of an ℓ-valued automaton can be 
proposed and it will be interesting to see that up to which extent these concepts depend 
on the distributivity of associated lattice. 
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Notes 
1 A Kuratowski ℓ-valued closure operator k: LX → LX on X is being called here saturated if the 

(usual) requirement |=ℓ k(A ∪ B) ≡ k(A) ∪ k(B) is replaced by |=ℓ k(∪Aj) ≡ ∪k(Aj), where A, B, 
Aj ∈ LX, j ∈ J. 


