A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy
by Hu Zhang; Yu Jin; Wei Gu; Zeng-Yao Li; Wen-Quan Tao
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 13, No. 3/4, 2013

Abstract: A numerical study on the influence of the insulation layer of the hot disk sensor on the thermal conductivity measuring accuracy has been conducted. It is found that the influences of the thermal contact resistance and the insulating layer could be excluded in the transient plane source method. Both the kapton5501 and the mica5082 sensor could measure stainless steel and ceramic with a deviation less than 3% while the deviation increases to 54.2% of silica aerogel because of the large heat loss proportion through the mica5082 sensor side. The simulation proved that the heat loss through sensor side and accuracy could be improved by increasing the radius of the sensor.

Online publication date: Thu, 31-Oct-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com