An accurate and efficient method for automatic deformation of unstructured polyhedral grids to simulate the flow induced by the motion of solid objects
by Seongwon Kang; Sang Hyuk Lee; Nahmkeon Hur
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 13, No. 3/4, 2013

Abstract: In the present study, an efficient numerical method to deform an unstructured polyhedral grid for accurate simulations of a flow induced by a moving solid object is proposed. In order to overcome inefficiency of the existing methods based on the vertices of a computational cell, the present approach deforms the polyhedral grids adaptively using a network based on the centre of each computational cell. It is shown that the proposed method provides with an improved efficiency for an arbitrary Lagrangian-Eulerian (ALE) simulation of a flow with a moving solid object compared to the existing methods based on the vertices. It is also shown that a polyhedral grid results in a better numerical accuracy than a triangular grid. The present numerical methods were applied to flows around a fixed and oscillating circular cylinder with various Reynolds numbers and oscillating frequencies. The produced numerical results were verified against aerodynamic characteristics of the previous numerical studies.

Online publication date: Thu, 31-Oct-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com