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1 Introduction

Digital signatures are ubiquitous in our computer dominated
society. They are basic building blocks of eGovernment
and eCommerce. They are used to guarantee the integrity
and authenticity of software updates and enable secure
internet connections. The security of currently used
signature schemes – RSA and ECDSA – relies on the
hardness of certain number theoretic problems, whereas the
actual hardness of these problems remains unclear. Shor
(1994) presented a quantum algorithm that can be used
to solve the factorisation and discrete logarithm problems
in polynomial time, thus completely breaking RSA and
ECDSA. Given the importance of digital signatures, the
search for alternative signature schemes that resist attacks
arising from algorithmic and technological advances is an
important research goal.

One promising alternative are hash-based signatures.
Their sole security requirement is the existence of hash
function families with certain properties. Current research
suggests, that the security of hash-based signatures
will not be significantly harmed by quantum computer
supported attacks (Grover, 1996). Another benefit of
hash-based signature schemes is that they are provably
secure in the standard model (Garćıa, 2005; Dahmen
et al., 2008; Dods et al., 2005; Hevia and Micciancio,
2002). A hash-based signature scheme or Merkle signature
scheme (MSS) consists of the combination of a one-time
signature (OTS) scheme to sign the data and Merkle’s
(1990a) tree authentication scheme which reduces the
authenticity of many one-time verification keys to
the authenticity of a single public key. Examples for
OTSs are the Lamport-Diffie OTS (Lamport, 1979), the
Merkle (1990a) OTS, the Winternitz one-time signature
(W-OTS) scheme (Merkle, 1990a; Dods et al., 2005),
the Bleichenbacher-Maurer OTS (Bleichenbacher and
Maurer, 1994), the BiBa OTS (Perrig) and HORS (Reyzin
and Reyzin, 2002). The W-OTS is most suitable for
combining it with Merkle’s tree authentication scheme
because of the small verification key size and the flexible
trade-off between signature size and signature generation
time. Further it is possible to compute the corresponding
verification key given a W-OTS signature. So a MSS
signature does not need to contain the verification key.
This is not the case for all of the above mentioned schemes
besides the Bleichenbacher-Maurer OTS but it reduces the
MSS signature size significantly. Hence efficient variants
of the MSS rely on W-OTS (Buchmann et al., 2007).
W-OTS is also used for authentication in sensor networks
(Luk et al., 2006).

The size of a Winternitz signature is roughly
mn/ log2 w bits and signing roughly requires wm/ log2 w
hash operations, where m is the bit length of the hash

value to be signed, n is the output length of the hash
function used in the scheme, and w is the Winternitz
parameter determining the trade-off between signature
size and signature generation time. In Dods et al. (2005)
and Hevia and Micciancio (2002), the authors provide
security reductions for graph-based OTSs, a general class
of OTS which includes W-OTS. Due to the generality of
graph-based OTS, these security reductions require the used
hash function to be collision resistant. Collision resistance
is one of the strongest security notions of hash functions
and admits effective generic attacks using the birthday
paradox. Following these reductions, to achieve b bits of
security one must use n = 2b and m = 2b which yields
W-OTS signatures of size roughly 4b2/ log2 w bits.

1.1 Our results

In this paper we show that weaker assumptions are
sufficient for the security of W-OTS. We show that W-OTS
is existentially unforgeable under adaptive chosen message
attacks (Goldwasser et al., 1988) when instantiated with a
family of pseudorandom functions (PRF). Since the PRF
property is not affected by birthday attacks, hash functions
with shorter output length can be used which in turn leads
50% smaller signatures at the same security level, compared
to Dods et al. (2005). This result is especially meaningful
because the main issue with hash-based signatures is the
signature size. Also, it has been shown that PRF exist
if one-way functions (OWFs) exist (H̊astad et al., 1999;
Goldreich et al., 1986) and further, that OWF exist if
secure digital signature schemes exist (Rompel, 1990). So
our result shows that a secure instance of W-OTS exists,
as long as there exists any secure signature scheme. For
collision resistant hash function families it is unknown if
their existence can be based on the existence of OWF. In
a companion work (Buchmann et al., 2011b) we use this
result to introduce a new variant of a MSS, solely based on
the assumption that OWF exist, that provides the actually
shortest signature size of all such MSS and is forward
secure.

We also consider unforgeability in the strong sense
by reducing the strong unforgeability of W-OTS to the
intractability of finding key collisions (given x, find k, k′

such that k ̸= k′ and fk(x) = fk′(x)) or second keys (given
x and key k, find k′ such that k ̸= k′ and fk(x) = fk′(x)).
The notion of key-collision resistance (KCR) was used
before by Perrig et al. (2000) in the security analysis of
the TESLA protocol. Fischlin (1999) uses this notion as
property of PRF tribe ensembles to construct a committing
and key-hiding private-key encryption scheme. Canetti et al.
(1998) provide a construction for perfectly OWFs assuming
KCR. We provide a thorough treatment of these key-based
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notions and pseudorandomness. We define them formally
and investigate implications and separations among them.

Our results are exact and in the standard model. Such
reductions are of enormous practical value compared to
asymptotic results or the random oracle model. Exact
reductions allow the security level of the scheme to be
estimated for fixed security parameters. The standard model
uses only security notions which can be efficiently realised
in practice. Exact reductions are also of theoretical interest,
because they indicate the quality of a reduction and allow
an easy comparison of the hardness of the problems.

This article is a revised and expanded version of
Buchmann et al. (2011a).

1.2 Notation

Throughout the paper we stick to the following notation. We
use n as the main security parameter. Efficient algorithms
require only polynomial time and space in n. The statement
x

$←− X means x is chosen uniformly at random from X .
The concatenation of strings is done via ||. We also write
log for log2. During the paper we measure the runtime of
an algorithm in terms of the number of evaluations of the
function family used.

1.3 Organisation

We prove the existential unforgeability of W-OTS using
PRFs in Section 2. We prove the strong unforgeability
of W-OTS using second-key resistant or key-collision
resistant functions in Section 3. We examine implications
and separations between the introduced security notions
in Section 4. We discuss some implementation related
issues in Section 5. We interpret our results and provide
concluding remarks in Section 6.

2 Existential unforgeability of the W-OTS

In this section we prove that the W-OTS is existentially
unforgeable under adaptive chosen message attacks
(EU-CMA) when instantiated with a family of
pseudo-random functions. We begin by reviewing W-OTS
and introduce a little tweak required by the reduction. Then
we introduce the required security notions. Finally we state
the reduction and use it to estimate the security level.

2.1 The W-OTS

The W-OTS was first mentioned by Merkle (1990a) as a
generalisation of the Merkle OTS proposed in the same
work. A complete description can be found in Dods et al.
(2005). The core idea of W-OTS is to iteratively apply a
function on a secret input, whereas the number of iterations
depends on the message to be signed. The used functions
are members of the function family

F (n) = {fk : {0, 1}n → {0, 1}n|k ∈ {0, 1}n} (1)

parameterised by a key k ∈ {0, 1}n and a security
parameter n. For our purposes iteratively applying a
function is defined as follows. We use the output of the
function fk as key for the next iteration. The function is
always evaluated on the same input x. This is in contrast to
the original construction, where the output of the function
is used as input for the next iteration and the key remains
fixed. We use the notation f i

k(x) to denote that the function
is iterated i times on input x using key k for the first
iteration and the output of the function as key for the next
iteration, e.g., f2

k (x) = ffk(x)(x) and f0
k (x) = x.

In the following, we only describe the generation
of signatures for m-bit messages. The generalisation to
arbitrary sized messages is straightforward by utilising a
collision resistant hash function.

2.2 Key pair generation (Algorithm Kg)

First we choose the Winternitz parameter w ∈ N, w > 1,
defining the compression level. Next we choose a random
value x

$←− {0, 1}n. The signature key consists of ℓ bit
strings of length n chosen uniformly with the random
distribution,

sk = (sk1, . . . , skℓ) $←− {0, 1}(n,ℓ),

where ℓ is computed as follows.

ℓ1 =

⌈
m

log(w)

⌉
, ℓ2 =

⌊
log(ℓ1(w − 1))

log(w)

⌋
+ 1,

ℓ = ℓ1 + ℓ2.

The verification key is computed using functions from the
family F (n). The bit strings in the signature key are used
as key for the function f and the function is iterated w − 1
times on input x.

pk = (pk0, pk1, . . . , pkℓ)
=

(
x, fw−1

sk1
(x), . . . , fw−1

skℓ
(x)

)
2.3 Signature generation (Algorithm Sign)

We describe how to sign an m-bit message
M = (M1, . . . ,Mℓ1) given in base-w representation,
i.e., Mi ∈ {0, . . . , w − 1} for i = 1, . . . , ℓ1. We begin by
computing the checksum

C =

ℓ1∑
i=1

(w − 1−Mi) (2)

and represent it to base w as C = (C1, . . . , Cℓ2). The length
of the base-w representation of C is at most ℓ2 since
C ≤ ℓ1(w − 1). Then we set B = (b1, . . . , bℓ) = M ∥ C.
The signature of message M is computed as

σ = (σ1, . . . , σℓ) =
(
f b1

sk1
(x), . . . , f bℓ

skℓ
(x)

)
. (3)
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2.4 Signature verification (Algorithm Vf)

The verifier first computes the base-w string
B = (b1, . . . , bℓ) as described above. Then he checks
whether(

fw−1−b1
σ1

(pk0), . . . , fw−1−bℓ
σℓ

(pk0)
)

?
= (pk1, . . . , pkℓ).

The signature is accepted iff the comparison holds.

2.5 Security notions for signature schemes and function
families

We begin by reviewing the standard definition of digital
signature schemes and the security notion existential
unforgeability under adaptive chosen message attacks
(EU-CMA) (Goldwasser et al., 1988). We then define
two security notions for function families required for our
reduction. The first is the well known pseudo-randomness
property. The second is key one-wayness (KOW) which
states that it is hard to find a key k such that the function
fk maps a given input x to a given output y. We also state
two lemmas about these notions which will be useful for
the reduction of W-OTS.

Definition 2.1 (Digital signature schemes): A digital
signature scheme Sig = (Kg, Sign,Vf) is a triple of PPT
algorithms:

• Kg(1n) on input of a security parameter 1n outputs a
private signing key sk and a public verification key pk

• Sign(sk,M) outputs a signature σ under sk for the
message M

• Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M
under pk.

Definition 2.2 [Existential unforgeability (EU-CMA)]: Let
Sig = (Kg, Sign,Vf) be a digital signature scheme. The
EU-CMA security notion is defined by the following
experiment.

Experiment ExpEU-CMA
A,Sig (n)

(sk, pk)← Kg(1n)
(M⋆, σ⋆)← ASign(sk,·)(pk)
Let {(Mi, σi)}

qSign
1

be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M⋆, σ⋆) = 1

and M⋆ ̸∈ {Mi}
qSign
1 .

The signature scheme Sig is (t, ϵ, q)-existentially
unforgeable if there is no t-time adversary that succeeds
with probability ≥ ϵ after making ≤ q signature oracle
queries.

A (t, ϵ, 1)-EU-CMA secure signature scheme is called a
OTS.

Definition 2.3 (PRFs): A family of functions F (n) is
pseudorandom, if no efficient algorithm Dis is able to
distinguish a randomly chosen function fk ∈ F (n) from a
randomly chosen function from the set G(n) of all functions
with same domain and range as F (n). The formal definition
is taken from Bellare et al. (2000). The distinguisher Dis
gets access to an oracle Box(·) implementing a function
randomly chosen from F (n) or G(n) in a black-box
manner. The distinguisher may adaptively query Box(·) as
often as he likes. Finally, the distinguisher outputs 1 if
he thinks that Box models a function from F (n) and 0
otherwise.

Let F (n) be a family of functions as in (1) and
G(n) = {g : {0, 1}n → {0, 1}n} the family of all functions
with domain and range {0, 1}n. We call F (n) (t, ϵ)-PRF, if
the advantage

AdvPRFF (n)(Dis)

=
∣∣∣Pr[Box $←− F (n) : DisBox(·) = 1] (4)

− Pr[Box $←− G(n) : DisBox(·) = 1]
∣∣∣

of any distinguisher Dis that runs in time t is at most ϵ.

Definition 2.4 (KOW): Let F (n) be a family of functions as
in (1). We call F (n) (t, ϵ)-KOW, if the success probability

AdvKOWA

= Pr
[
(x, k)

$←− {0, 1}n × {0, 1}n, y ← fk(x), (5)

k′ ←− A(x, y) : y = fk′(x)
]

of any adversary A that runs in time t is at most ϵ.

Please recall, that the time t is counted in terms of
evaluations of f . We assume, that a call to Box takes
the same time as an evaluation of f . The security level
or bit security b the family F (n) or a signature scheme
Sig provides against attacks on the respective notion is
computed as b = log(t/ϵ).

A key collision of a function family F (n) is defined
as a pair of distinct keys (k, k′) such that fk(x) = fk′(x)
holds for some x ∈ {0, 1}n. In our proofs we make use of
an upper (κ) and a lower (κ′) bound on the number of key
collisions that occur in the family F (n). We define these
bounds as follows:

Definition 2.5: Let F (n) be a family of functions as in (1).
We define the upper bound on the number of key collisions
in F (n) as the maximum number of keys that map the same
input value to the same output value:

κ(F (n))

= max
K⊆{0,1}n

{
|K| | (∃x ∈ {0, 1}n),

(∀k1, k2 ∈ K) : fk1(x) = fk2(x)
}
.
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We define the lower bound on the number of key collisions
in F (n) accordingly as

κ′(F (n))

= min
K⊆{0,1}n

{
|K| | (∃x ∈ {0, 1}n),

(∀k1, k2 ∈ K) : fk1(x) = fk2(x)
}
.

We write κ (κ′) instead of κ(F (n)) (κ′(F (n))) where F (n)
is clear from the context. The values κ and κ′ restrict the
number of different images y some preimage x can be
mapped to by functions in F (n), i.e.,

2n

κ
≤

∣∣ {fk(x) : k ∈ {0, 1}n} ∣∣ ≤ 2n

κ′ (6)

for all x ∈ {0, 1}n. Also, given y
$←− {0, 1}n the

probability that there exists a key k and preimage x such
that fk(x) = y holds is at least 1/κ.

The following lemma describes an interesting relation
between the security level of PRFs and the value κ defined
above.

Lemma 2.6: Let F (n) be (t, ϵ)-PRF with security level
b = log(t/ϵ) and κ(F (n)) as in Definition 2.5. Then
κ(F (n)) ≤ 2n−b + 1.

Proof: Assume κ > 2n−b + 1 and let (x, y) be a pair where
there exist κ keys mapping x to y. The distinguisher
Dis queries Box with x. If Box(x) = y then Dis
returns 1 and 0 otherwise. Clearly Dis runs in time
t′ = 1. Further we have Pr[Box $←− F (n) : DisBox(·) = 1]

= κ/2n > 2−b + 2−n and Pr[Box $←− G : DisBox(·) = 1]
= 2−n and therefore ϵ′ = AdvPRFF (n)(Dis) > 2−b which is a
contradiction. �

Following the definition of κ and κ′, κ′ ≥ 1 always holds.
The above lemma implies that for a good PRF family,
i.e., a PRF family with b = n bit security, κ = 2.

The following lemma states that the KOW property is
implied by the PRF property. In other words, an efficient
attacker against the KOW property leads to an efficient
distinguisher.

Proposition 2.7 (PRF⇒ KOW): Let F (n) be (t, ϵ)-PRF.
Then F (n) is (t− 2, ϵ/(1/κ(F (n))− 1/2n)) – KOW.

Proof: Assume there exists an adversary AKOW(x, y) who
finds a key k satisfying y = fk(x) in time tKOW with
probability ϵKOW. Then we can construct a distinguisher
Dis using AKOW the following way: Dis queries Box(·)
with x ∈ {0, 1}n. After receiving the answer y, Dis runs
AKOW(x, y) to obtain key k. Then Dis queries Box with
a second value x′ ∈ {0, 1}n. If Box(x′) = fk(x

′) = y′ Dis
returns 1 and 0 otherwise. In case Box $←− F (n), the
probability that AKOW outputs a key k such that fk(x) = y
holds is ϵKOW. The probability that fk(x

′) = y′ holds is
at least 1/κ, because at least one of the κ functions
in F (n) mapping x to y also maps x′ to y′. In case

Box $←− G(n), the probability that AKOW outputs a key k
such that fk(x) = y holds is at most ϵKOW. The probability
that fk(x′) = y′ holds is 1/2n, because from the 2n(2

n−1)

functions in G mapping x to y, only 2n(2
n−2) also map

x′ to y′. In summary we get ϵ ≥ AdvPRFF (n)(Dis) ≥ ϵKOW
(1/κ− 1/2n) . �

2.6 Security reduction

We now state the main result of this section.

Theorem 2.8: Let F (n) be a family of functions as in
Equation (1). If F (n) is (tPRF, ϵPRF)-PRF then W-OTS is
(t, ϵ, 1) EU-CMA with

t = tPRF − tKg − tVf − 2 (7)

ϵ ≤ ϵPRFℓ
2w2κ(F (n))w−1 1(

1
κ(F (n)) −

1
2n

) (8)

where tKg and tVf denote the runtime of the W-OTS key
generation and verification algorithms, respectively.

Proof: The proof works as follows: first we use a forger for
W-OTS to construct an adversary on the KOW of F (n).
This adversary is then used to construct a distinguisher
using Proposition 2.7. Algorithm 1 shows how a forger
ForSign(sk,·)(pk) for W-OTS can be used to construct an
adversary AKOW on the KOW of F (n). The signing oracle
Sign is simulated by the adversary.

The goal of the adversary AKOW is to produce a key
k′ such that fk′(x) = y for x, y provided as input. AKOW
begins by generating a regular W-OTS signature key pair
and choosing random positions α and β (Lines 1 and 2).
Then he computes the W-OTS verification key using value
x. The bit string at position α in the verification key (pkα)
is computed by inserting y at position β in the hash chain
used to compute pkα (Line 3). Next, AKOW calls the forger
and waits for it to ask an oracle query. The forgers query
can only be answered if bα ≥ β holds, because AKOW does
not know the first β entries in the corresponding hash chain
(Lines 6 and 7). The signature is computed as in the real
scheme with one difference. For the αth hash-chain only
bα − β iterations are computed, as we placed y at position
β in this chain (Line 7). The forgery produced by the forger
is only meaningful to AKOW if b′α < β holds (Line 10). Only
then the bit string σα in the forged signature might yield a
key k′ such that y = fk′(x) holds (Lines 11 and 12). We
now compute the success probability of AKOW.

W.l.o.g we assume that the forger queries the signing
oracle. The probability of bα ≥ β in Line 6 is at least
(ℓw)−1. This is because of the checksum which guarantees
that not all of the bi are zero simultaneously. The
probability that the forger succeeds in Line 9 is at least
ϵ by definition. This probability holds under the condition
that the verification key pk computed in Line 3 resembles
a regular verification key which is the case if there exists a
key k such that fβ

k (x) = y. This happens with probability
at least 1/κβ according to Definition 2.5. The probability
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of b′α < β in Line 10 is at least (ℓw)−1. This is because of
M ̸= M ′ and the checksum which guarantees that bi > b′i
for some i ∈ {1, . . . , ℓ}. The probability that y = fk′(x)
holds in Line 12 is at least 1/κw−1−β . This is because there
exist at most κw−1−β different values that are mapped to
pkα after w − 1− β iterations and at least one of them is y.

Algorithm 1 AKOW

*+,-&. A&128#+: 9*8*5&+&8) n,mB @#$+&8$#+C

9*8*5&+&8 wB 3&)18#9+#!$ !" F (n)B
>?@ 1/*,,&$7& (x, y) *) #$ D&"#$#+#!$ ;-E

/-&,-&. k′B )21/ +/*+ fk′(x) = y !8

'- 7&$&8*+& @F?.A )#7$*+28& 4&:

;- 1/!!)& #$3#1&) α ∈ {1, ..., `}, β ∈ {1, . . . , w − 1}
2$#"!85,: *+ 8*$3!5

G- 1!592+& =&8#"#1*+#!$ 4&: *) 0 = xB i = fw−1

i
(x)

"!8 i = 1, . . . , l, i 6= α *$3 α = fw−1−β
y (x)

E- 82$ ( ,·)( )

H- 0'1+ ( ,·)( ) I2&8#&) 6#+/ 5&))*7& M

&'1+ 1!592+& B = (b1, ..., b`)

 - %2 bα < β $1&-$+

J- 7&$&8*+& )#7$*+28& σ !" M *) σi = f
bi

i
(x) "!8

i = 1, . . . , `, i 6= α *$3 σα = f bα−β
y (x)

K- )&$3 σ +! ( ,·)( )

L- 0'1+ ( ,·)( ) 8&+28$) =*,#3 (σ′,M ′) &'1+
1!592+& B′ = (b′1, ..., b

′

`)

'(- %2 b′α ≥ β $1&-$+

''- 1!592+& k′ ← f
β−1−b′

α

σ′

α

(x)

';- %2 fk′(x) 6= y $1&-$+

'G- $1&-$+ k′

In summary we have ϵKOW ≥ ϵ/(ℓ2w2κβκw−1−β)
and tKOW = t+ tKg + tVf as the time for the
signature query is already taken into account at
the runtime of the forger. Combining this with
Proposition 2.7 yields ϵPRF ≥ ϵ(1/κ− 1/2n)/(ℓ2w2κw−1)
and tPRF = t+ tKg + tVf + 2 which concludes the proof. �

2.7 Security level

We now compute the security level of W-OTS for the
case that only generic attacks against the PRF property of
the function family F (n) exist. This reflects the security
of W-OTS, if the used function family F (n) has no
specific weaknesses. It corresponds to the security level
defined by Lenstra (2004). The best known generic attack
against the pseudorandomness of F (n) is a brute-force key
recovery attack. As before, we count the running time of
an algorithm as the number of evaluations of elements

from F (n). A simple counting argument gives that tKg
and tVf are both bounded by ℓw evaluations of elements
from F (n). In the following corollary we use the bound
4/(ℓw2w−2) ≤ 2n−w−1−2 log(ℓw) which is fulfilled by most
practical parameter sets. Anyhow, following the proof of
the corollary one can easily compute the security level for
any specific set of parameters.

Corollary 2.9: Let b = log(t/ϵ) denote the security level
and use ℓw as upper bound for tKg and tVf, respectively. Let
F (n) be (2n−1−logκ(F (n)), 1/2(1/κ(F (n))− 1/2n))-PRF
with κ(F (n)) = 2 and 4/(ℓw2w−2) ≤ 2n−w−1−2 log(ℓw).
Then the security level of W-OTS under generic attacks is

b ≥ n− w − 1− 2 log(ℓw) (9)

Proof: We use a (tPRF, ϵPRF)-PRF family F (n) and
assume that the best attack on the pseudorandomness
of F (n) is a brute-force key recovery attack. An
attacker that searches through tKOW = 2n−1−logκ keys
has success probability ϵKOW = 1/2 for recovering
the correct key. By Proposition 2.7 this yields
an tPRF = 2n−1−logκ + 2, ϵPRF = 1/2(1/κ− 1/2n)
distinguisher for the pseudorandomness of F (n). The
security level of the PRF property of F (n) in presence
of this distinguisher is b = n which in turn implies κ ≤ 2
according to Lemma 2.6. The security level of W-OTS
using F (n) is computed as follows

2b =
t

ϵ
≥

tPRF − tKg − tVf − 2

ϵPRFℓ2w2κw−1

(
1

κ
− 1

2n

)
≥ 2n−logκ − 4ℓw

ℓ2w2κw−1

≥ 2n−w−2 log(ℓw) − 4

ℓw2w−1

Since 4/(ℓw2w−2) ≤ 2n−w−1−2 log(ℓw) per assumption we
finally obtain b ≥ n− w − 1− 2 log(ℓw) as security level
of W-OTS. �

3 Strong unforgeability of the W-OTS

While the reduction of the last section shows that W-OTS
is EU-CMA assuming a standard security notion for hash
functions, it does not provide security in the strong sense.
This is accomplished by two reductions presented in this
section. We show that W-OTS is strongly unforgeable
under adaptive chosen message attacks (SU-CMA), if the
used function family is either second-key resistant or
key-collision resistant. The difference between EU-CMA
and SU-CMA is, that in SU-CMA the adversary also wins if
he returns a new signature for an already queried message.
SU-CMA secure signature schemes have a number of
applications, including the construction of chosen-ciphertext
secure encryption schemes (Canetti et al., 2004), and group
signatures (Ateniese et al., 2000; Boneh et al., 2004). While
the reductions in this section provide stronger security
guarantees, they do not rely on standard security notions of
hash functions. One is therefore confronted with a trade-off
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between security and requirements on the hash function.
Again we begin by introducing the required security notions
and then continue with the reductions and the computation
of the security levels.

3.1 Security notions for signature schemes and function
families II

We begin by reviewing the definition of strong
unforgeability under adaptive chosen message attacks.
Then, we define two security notions for function families
required for our reductions. The first is second-key
resistance (SKR) which states that given key k and
preimage x, it is hard to find a key k′ ̸= k such that
fk(x) = fk′(x). The second is KCR which states that given
preimage x, it is hard to find two distinct keys k, k′ such
that fk(x) = fk′(x).

Definition 3.1 [Strong unforgeability (SU-CMA)]: Let
Sig = (Kg, Sign,Vf) be a digital signature scheme. The
SU-CMA security notion is defined by the following
experiment.

Experiment ExpSU-CMA
A,Sig (n)

(sk, pk)← Kg(1n)
(M∗, σ∗)← ASign(sk,·)(pk)
Let {(Mi, σi)}

qSign
1

be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M⋆, σ⋆) = 1 and

(M⋆, σ⋆) ̸∈ {(Mi, σi)}
qSign
1 .

The signature scheme Sig is (t, ϵ, q)-SU-CMA if there is
no t-time adversary that succeeds with probability ≥ ϵ after
making ≤ q signature oracle queries.

Definition 3.2 (SKR): Let F (n) be a family of functions as
in (1). We call F (n) (t, ϵ)-SKR, if the success probability

AdvSKRA

= Pr
[
(x, k)

$←− {0, 1}n × {0, 1}n, (10)

k′ ← A(x, k) : k′ ̸= k, fk′(x) = fk(x)
]

of any adversary A that runs in time t is at most ϵ.

Definition 3.3 (KCR): Let F (n) be a a family of functions
as in (1). We call F (n) (t, ϵ)-KCR, if the success
probability

AdvKCRA

= Pr
[
x

$←− {0, 1}n, (k, k′)← A(x) : (11)

k ̸= k′, fk(x) = fk′(x)
]

of any adversary A that runs in time t is at most ϵ.

Proposition 3.4 (SKR⇒ KOW): Let F (n) be (t, ϵ)-SKR
with κ′ > 1. Then F (n) is (t− 1, ϵ/(1− 1/κ′))-KOW.

Proof: Towards contradiction, let us assume a successful
adversary A that breaks KOW for F (n). We show how to
use A as a black-box in an algorithm B to break SKR.
On input (x, k) from the SKR experiment, the algorithm
B computes y ← fk(x) and runs A(x, y). The subroutine
returns k′ such that fk(x) = fk′(x) with probability at least
ϵ. Then, B returns k′. Since κ′(F (n)) > 1, the algorithm
A returns a key that is different from k with probability at
least 1− 1/κ′ ≥ 1/2. Thus, B is successful with probability
ϵ(1− 1/κ′). The condition κ′ > 1 is required to guarantee
that a different key actually exists. �

3.2 Security reductions

We now state the main result of this section.

Theorem 3.5: Let F (n) be a family of functions as
in equation (1). Denote by tKg and tVf the runtime of
the W-OTS key generation and verification algorithms,
respectively.

a If F (n) is (tSKR, ϵSKR)-SKR then W-OTS is (t, ϵ, 1)
SU-CMA with

t ≥ tSKR − tKg − tVf − 1 (12)

ϵ ≤ ϵSKRℓ
2w2κ(F (n))w−2 κ′(F (n))

κ′(F (n))− 1
(13)

b If F (n) is (tKCR, ϵKCR)-KCR then W-OTS is (t, ϵ, 1)
SU-CMA with

t ≥ tKCR − tKg − tVf (14)

ϵ ≤ ϵKCR
κ′(F (n))

κ′(F (n))− 1
(15)

Proof: To prove part (a) we show in Algorithm 2 how a
forger ForSign(sk,·)(pk) for W-OTS can be used to construct
an adversary ASKR on the SKR of F (n) with non-negligible
advantage. The signing oracle Sign is simulated by the
adversary.

On input of a challenge key kc and value xc, ASKR
first generates a W-OTS key pair using x = xc. Then he
places kc randomly in the hash chain used to compute
pkα at position β and runs ForSign(sk,·)(pk) on input
pk = (xc, pk1, . . . , pkℓ). If the forger queries the oracle on
message M , ASKR can only answer the query if bα ≥ β,
because ASKR can only compute the values of the αth hash
chain starting from kc. In this case the adversary returns
(M,σ) otherwise he returns fail. If the forger succeeds in
computing a valid signature (M ′, σ′) there are two possible
cases.

If ForW−OTS returns a signature for the message sent
to the oracle, there has to be at least one index i such that
σi ̸= σ′

i because σ ̸= σ′. ASKR only found a second key if
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1 α is one of these indices

2 bα = β

3 fkc(xc) = fσ′
α
(xc).

Observe that (1) implies that kc ̸= σ′
α and therefore σ′

α is a
second key for the challenge (kc, xc). So ASKR returns σ′

α.
If the forger returns a signature for a new message the

adversary can only find a second key for the challenge
kc if (1a) b′α < β or (1b) b′α = β and bα > β, if (2)
fkc(xc) = f

β−b′α+1
σ′
α

(xc) holds and last but not least if

kc ̸= f
β−b′α
σ′
α

(xc). If all of these conditions are fulfilled ASKR

returns f
β−b′α
σ′
α

(xc) as second key. Otherwise ASKR returns
fail.
Algorithm 2 ASKR

+,-.&/ <&+?1"(: 73136&(&1# n,mB C"%(&1%"(D

73136&(&1 wB *&#+1"7("$% $' F (n)B
<=> +)388&%;& (xc, kc) 3* "% E&'"%"("$% -.,

0.&-.&/ k′ : fkc
(xc) = fk′(xc) $1

!. ;&%&13(& CF/G< 9&: 73"1 ( , ) ?#"%; x = xc
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kc
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L. ;&%&13(& #";%3(?1& σ $' M 3# σi = f
bi

i
(x)

'$1 i = 1, . . . , `, i 6= α 3%* σα = f
bα−β

kc
(x)

 . #&%* σ ($ ( ,·)( )

M. 1'2, ( ,·)( ) 1&(?1%# 238"* (σ′,M ′)
&'2, +$67?(& B′ = (b′1, ..., b

′

`)

!N. %3 M = M ′ 4,5 σα 6= σ′α
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α
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β−b′
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α
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β−b′
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σ′

α

(xc)

&'2, $2&.$, f
β−b′

α

σ′
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We now compute the success probability. Like in the
proof of Theorem 2.8 (a), pk is a possible public key
only with probability at least 1/κβ . As before we assume
that ForSign(sk,·)(pk) queries the oracle without loss of
generality. So the probability of bα ≥ β in Line 6 is at least
(ℓw)−1. This is caused by the checksum which guarantees
that at least one bi is greater zero. The forger succeeds with
probability at least ϵ according to the definition. Then we’ve
got two mutual exclusive cases.

• Case 1 (M = M ′): The probability that σα ̸= σ′
α

holds in Line 10 is at least 1/ℓ as there has to be at
least one index i such that σi ̸= σ′

i because σ ̸= σ′.
For the second condition bα = β we get a probability
of 1/w as β was chosen at random. If the second
condition holds, the last condition fkc(xc) = fσ′

α
(xc)

holds at least with probability 1
κw−1−β−1 , because

there are∣∣{y ∈ {0, 1}n|fw−1−β−1
y (xc) = pki

}∣∣ = κw−1−β−1

possible values for fσ′
α
(xc). So altogether we get a

probability of at least ϵ
ℓ2w2κw−2 for finding a second

key for this case.

• Case 2 (M ̸= M ′): The probability in Line 11 that
(b′α < β or (b′α = β and bα > β)) holds is greater
than (ℓw)−1. This is because of M ̸= M ′ and the
checksum which guarantees that bi > b′i for some
i ∈ {1, . . . , ℓ}. Next fkc

(xc) = f
β−b′α+1
σ′
α

(xc) holds at
least with probability 1

κw−1−β−1 as before. And at last
kc ̸= f

β−b′α
σ′
α

(xc) holds with probability at least κ′−1
κ′ if

the previous condition already holds. Therefore we get
a success probability of ϵ(κ′−1)

ℓ2w2κw−2κ′ for case 2.

Since both cases are mutually exclusive, the success
probability of ASKR is

ϵSKR ≥ min
{

ϵ

ℓ2w2κw−2
,

ϵ(κ′ − 1)

ℓ2w2κw−2κ′

}
=

ϵ(κ′ − 1)

ℓ2w2κw−2κ′ .

The time required by ASKR is tSKR ≤ t+ tKg + tVf. The
time to answer the signature query is already contained
in the runtime of the forger. This concludes the proof of
part (a).

To prove part (b) we show in Algorithm 3 how a
forger ForSign(sk,·)(pk) for W-OTS can be used to construct
an adversary AKCR on the KCR with non-negligible
advantage. Again, the signing oracle Sign is simulated by
the adversary.

The goal of adversary AKCR on input xc is to find
two different keys k1, k2 for which fk1(xc) = fk2(xc)
holds. Therefore AKCR begins by generating a W-OTS
key pair using (x = xc) and calling ForSign(sk,·)(pk)
with the generated public key. If the forger queries
the signing oracle Sign for the signature of a message
M , AKCR answers this query with σ = Sign(sk,M). If
the forger succeeds in generating a signature (M ′, σ′),
AKCR computes the vector B′ = (b′i), 1 ≤ i ≤ l using
M ′ as in the signing algorithm of W-OTS. Then he
checks if there exists an index i with f

b′i
ski

(xc) ̸= σ′
i.

As f
w−1−b′i

f
b′
i

ski

(xc) = pki = f
w−1−b′i
σ′
i

(xc) there must exist

one j, 0 ≤ j ≤ w − 1− b′i with f
b′i+j
ski

(xc) = f j
σ′
i
(xc) and

f
b′i+j−1
ski

(xc) ̸= f j−1
σ′
i

(xc). So AKCR returns the key collision

(f
b′i+j−1
ski

(xc), f
j−1
σ′
i

(xc)).
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Algorithm 3 AKCR
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We now compute the success probability. The forger returns
a valid signature with probability ϵ per definition. Then we
have two alternative cases:

If M ′ = M the forger returned a different signature for
the message M signed by Sign. In this case the forger
returned a key collision with probability 1. As σ ̸= σ′ there
has to be at least one index i with σi ̸= σ′

i what implies
f
b′i
ski

(xc) ̸= σ′
i.

If M ′ ̸= M the probability that we find an index i

with f
b′i
ski

(xc) ̸= σ′
i and therefore a key collision is at least

(κ′ − 1)/κ′. If the forger did not query Sign there is at
least one index i with b′i > 0 because of the checksum
construction. If the forger did query Sign there is at
least one index i with b′i < bi because of the checksum
construction. In both cases there is at least one value σ′

i

the adversary was unable to take from prior information.
As there are κ′ keys mapping xc to some fix value,
there are κ′j possibilities to map σ′

i to pki = f j
σ′
i
(xc) for

j = w − 1− b′i. So the probability that f b′i
ski

(xc) = σ′
i holds

is (κ′j − 1)/κ′j . So in the worst case we find a collision
with probability at least (κ′ − 1)/κ′ as we stated above.

Since both cases are mutually exclusive, the
probability ϵKCR of finding a key collision is at least
ϵKCR ≥ ((κ′ − 1)/κ′)ϵ. the time required by AKCR is
tKCR ≤ t+ tKg + tVf. The time to answer the signature
query is already contained in the runtime of the forger.
This concludes the proof of part (b). �

3.3 Security level

We now compute the security level of W-OTS for the case
that only generic attacks against the SKR or KCR property
of the function family F (n) exist. This reflects the security
of W-OTS, if the used function family F (n) has no specific
weaknesses. It corresponds to the security level defined in
Lenstra (2004). The best known generic attack against the
SKR of F (n) is a brute-force key recovery attack. The
best known generic attack against the KCR of F (n) is
a birthday attack. As before, we count the running time
of an algorithm as the number of evaluations of elements
from F (n). A simple counting argument gives that tKg and
tVf are both bounded by ℓw evaluations of elements from
F (n). In the following corollary we use two bounds on the
parameters which are fulfilled by most practical parameter
sets. Anyhow, following the proof of the corollary one can
easily compute the security level for any specific set of
parameters.

Note, that in case of κ = 1 it is impossible to find two
signatures for the same message by construction. Therefore
W-OTS is SU-CMA secure if it is EU-CMA secure and
κ = 1. For the computation of the security level in this
section we therefore assume κ, κ′ ≥ 2, such that there exists
at least one key collision for each preimage.

Corollary 3.6: Let b = log(t/ϵ) denote the security level
and use ℓw as upper bound for tKg and tVf, respectively.

a Let F (n) be (2n−1−logκ(F (n)) + 1, (κ′(F (n))− 1)/
(2κ′(F (n))))-SKR and (tPRF, ϵPRF)-PRF with
log(tPRF/ϵPRF) = n and κ′(F (n)) = κ(F (n)) = 2. Let
4/(ℓw2w−2) ≤ 2n−w−2 log(ℓw). Then the security level
of W-OTS under generic attacks is

b ≥ n− w − 2 log(ℓw) (16)

b Let F (n) be (2(n−logκ′(F (n)))/2, 1/2)-KCR and
(tPRF, ϵPRF)-PRF with log(tPRF/ϵPRF) = n and
κ′(F (n)) = κ(F (n)) = 2. Let 2ℓw ≤ 2(n−1)/2−1.
Then the security level of W-OTS under generic
attacks is

b ≥ (n− 1)/2− 1 (17)

Proof:

a We use a (tSKR, ϵSKR)-SKR family F (n). The best
generic attack on the SKR of F (n) is a brute-force
key recovery attack. An attacker that searches through
tKOW = 2n−1−logκ keys has success probability
ϵKOW = 1/2 for recovering the correct key. By
Proposition 3.4 this yields an

tSKR = 2n−1−logκ + 1, ϵSKR =
1

2
· κ

′ − 1

κ′

adversary on the SKR of F (n). The security level of
the SKR property of F (n) in presence of this
adversary is b = n− log(κ− 1), assuming κ = κ′.
We further assume that F (n) is (tPRF, ϵPRF)-PRF with



On the security of the Winternitz one-time signature scheme 93

log(tPRF/ϵPRF) = n. This justifies using κ′ = κ = 2
since κ′ ≥ 2 is required to ensure that second keys
actually exist. The security level of W-OTS is
computed as follows

2b =
t

ϵ
≥

tSKR − tKg − tVf − 1

ϵSKRℓ2w2κw−2
· κ

′ − 1

κ′

=
2n−logκ − 4ℓw

ℓ2w2κw−2
· κ

′ − 1

κ′ · κ

κ− 1

≥ 2n−w+1−2 log(ℓw) − 4

ℓw2w−2

Since 4/(ℓw2w−2) ≤ 2n−w−2 log(ℓw) per assumption
we finally obtain b ≥ n− w − 2 log(ℓw) as security
level of W-OTS.

b We use a (tKCR, ϵKCR)-KCR family F (n) and assume
that the best attack on the KCR of F (n) is a birthday
attack, i.e., an adversary that searches through
tKCR = 2(n−logκ′)/2 keys has success probability
ϵKCR = 1/2 for finding a key collision. The security
level of the KCR property of F (n) in presence of this
adversary is b = (n− logκ′)/2− 1. Again we assume
that F (n) is (tPRF, ϵPRF)-PRF with
log(tSKR/ϵSKR) = n and use κ′ = κ = 2. The security
level of W-OTS is computed as follows

2b =
t

ϵ
≥

tKCR − tKg − tVf
ϵKCR

· κ
′ − 1

κ′

≥ 2(n−1)/2 − 2ℓw

Since 2ℓw ≤ 2(n−1)/2−1 per assumption we finally
obtain b ≥ (n− 1)/2− 1 as security level of W-OTS.

4 Relation between security notions

In this section we complete the analysis of
implications and separations between KOW, SKR,
KCR, and pseudorandomness (PRF) started with
Propositions 2.7 and 3.4, whereas the suspected separation
PRF ; SKR is left as an open problem. Figure 1
summarises our findings.

Proposition 4.1 (KOW ; PRF): Let g : {0, 1}n → {0, 1}n
be a OWF. Then there exists a family F (n) that is KOW
but not PRF.

Proof: We construct the function family F (n) as follows:
fk(x) := g(k), ∀k, x ∈ {0, 1}n. F (n) is not pseudorandom
as there exists an distinguisher Dis querying Box t times
with different values and if Box answers all queries with
the same value Dis returns 1. The success probability of Dis
is ϵPRF = 1− 2n(2n−t)

2n2n = 1− 1
2tn running in time t. F (n)

is KOW as we could construct an adversary AOW on the
one-wayness of g using any adversary AKOW on the KOW
property of F (n). On input y AOW chooses x $←− {0, 1}n,
runs k ← AKOW(x, y) and returns k. �

Figure 1 Implications among PRF, KOW, SKR, and KCR

Notes: A straight arrow A→ B means that property A implies
property B and a dashed line means that the implication
is conditional. When there is no arrow, it means that
we show a separation. The suspected separation between
PRF and SKR is an open problem.

Proposition 4.2 (KOW ; SKR): Let F (n) be (t, ϵ)-KOW.
Then, there is a family F ′(n) that is (t, 2ϵ)-KOW but not
SKR.

Proof: We denote functions in F (n) and F ′(n) with f
and f ′ respectively, and we define F ′(n) as follows.
For all k ∈ {0, 1}n−1, we define f ′

k||0 := fk||0 =: f ′
k||1

and add {f ′
k||0, f

′
k||1} to F ′(n). Thus, we have that

f ′
k = f ′

k⊕(0n−1||1) for every k ∈ {0, 1}n. Observe that
F ′(n) is KOW because a successful adversary against
KOW in F ′(n) will output the correct key w.r.t. F (n) with
probability at least 1/2. Given the fact that key-collisions
are easy to find, the new family is not SKR. On input
(x, k), the adversary simply outputs k ⊕ (0n−1||1) and wins
with probability 1 in the SKR experiment. �

Proposition 4.3 (KOW ; KCR): Let F (n) be (t, ϵ)-KOW.
Then, there is a family F ′(n) of functions that is
(t, ϵ+ 2/2n)-KOW but not KCR.

Proof: Let k1, k2 ∈ {0, 1}n be distinct, fixed keys and
denote functions in F (n) and F ′(n) with f and f ′

respectively. We define the new family F ′(n) as follows.
For all k ∈ {0, 1}n \ {k2}, we set f ′

k1
:= fk1 and inject a

collision f ′
k2

:= f ′
k1
. The new family is still KOW because

the challenge key is chosen uniformly at random and the
above change does not influence the adversaries success
probability but for a negligible (2/2n) amount. However,
the new family is not KCR because on input a description
of F ′(n), the adversary will simply output (k1, k2), under
which every input collides. �

Proposition 4.4 (KCR⇒ SKR): Let F (n) be (t, ϵ)-KCR.
Then F (n) is (t, ϵ)-SKR.

Proof: Towards contradiction, let us assume a successful
adversary A that breaks SKR for F (n). We show how to
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use A as a block-box in an algorithm B to break KCR.
On input x from the KCR experiment, the algorithm B
chooses k uniformly at random and runs A(x, k). The
subroutine returns k′ such that k′ ̸= k and fk(x) = fk′(x)
with probability at least ϵ. Then, B returns the pair (k, k′)
and is successful with the same probability ϵ and a
negligible computational overhead. �

Proposition 4.5 (SKR ; KCR): Let F (n) be (t, ϵ)-SKR.
Then, there is a family F ′(n) of functions that is
(t, ϵ+ 2/2n)-SKR but not KCR.

Proof: Let k1, k2 ∈ {0, 1}n be distinct, fixed keys and
denote functions in F (n) and F ′(n) with f and f ′

respectively. We define the new family F ′(n) as follows.
For all k ∈ {0, 1}n \ {k2}, we set f ′

k1
:= fk1 and inject a

collision f ′
k2

:= f ′
k1
. The new family is still SKR because

the challenge key is chosen uniformly at random and the
above change does not influence the adversaries success
probability but for a negligible (2/2n) amount. However,
the new family is not KCR because on input a description
of F ′(n), the adversary will simply output (k1, k2), under
which every input collides. �

Proposition 4.6 (PRF ; KCR): Let F (n) be (t, ϵ)-PRF.
Then, there is a family F ′(n) of functions that is
(t, ϵ+ 2/2n)-PRF but not KCR.

Proof: We construct F ′ as follows. We select
k1, k2

$←− {0, 1}n, and define f ′
k ∈ F ′(n) as

x 7→

{
0n for k ∈ {k1, k2}
fk(x) otherwise

for all k ∈ {0, 1}n.

Towards contradiction, let us assume that F ′ is not PRF.
Then, there is a distinguisher A that breaks PRF with
non-negligible probability ϵ. With access to Box, we
construct an adversary Dis against the family F . The
distinguisher Dis answers all queries of A with its own
oracle and simply forwards the output of A as its decision.
Hence, the advantage of Dis is ϵ− 2/2n because the
probability that Box represents fk1 or fk2 is at most 2/2n,
which contradicts the assumption.

Furthermore, F ′ is clearly not KCR because on input
a preimage x, one can simply output (k1, k2) as the
‘colliding’ keys. �

The following corollaries can be proven in analogy to
Proposition 4.1.

Corollary 4.7 (SKR ; PRF): If second preimage resistant
functions exist, there is a family F (n) that is SKR but not
PRF.

Corollary 4.8 (KCR ; PRF): If collision resistant functions
exist, there is a family F (n) that is KCR but not PRF.

5 Implementation

In this section we discuss how to implement W-OTS. First
we introduce two possible heuristic instantiations for F (n).
Then we show how to reduce the private key size.

The main challenge implementing W-OTS, is the
instantiation of F (n). We propose two different possible
heuristic instantiations. First, it is possible to use any hash
function Hash with block length b and output size n that
uses the the Merkle-Darmgard (M-D) construction (Merkle,
1990b). We construct the function family F (n) as

fK(M) = Hash(Pad(K)||Pad(M)),

for key K ∈ {0, 1}n, message M ∈ {0, 1}n and
Pad(x) = (x||10b−|x|−1) for |x| < b. We argue that it
is reasonable to assume that this is a PRF if Hash is a
secure cryptographic hash function. The assumptions we
use are essentially those used for the security of HMAC
using a practical hash function. In Bellare et al. (1996a),
it is assumed, that the compression function of a secure
M-D hash function is a PRF if keyed using the input. In
Bellare et al. (1996b), it is assumed, that the compression
function of a secure M-D hash function is a PRF if
keyed on the chaining input. Then it is shown, that a
fixed input length M-D hash function, keyed using the
initialisation vector (IV) is a PRF for fixed length inputs
if the assumptions made before hold. In our construction
the internal compression function of hash is evaluated
twice: First on the IV and the padded key, second on the
resulting chaining value and the padded message. Due to
the pseudorandomness of the compression function when
keyed on the message input, the first evaluation works as a
pseudorandom key generation. As we have a fixed message
length the second iteration is a PRF keyed using the IV
input. For the new SHA-3 hash function, this construction
will not be necessary, as one requirement for the candidate
functions was the PRF property.

Second, as we require F (n) to be a PRF it is possible to
use a block cipher. The standard heuristic assumption about
block ciphers is the assumption that they are pseudorandom
permutation (PRP) families and PRP are a special class
of PRF. Hence a straight forward use of any block cipher
is possible. As today many platforms provide hardware
acceleration for AES this instantiation might also lead
significant speed-ups in practice. For both constructions we
make the following assumption. As long as no specific
attack against the pseudorandomness of the used hash
function or block cipher is known that performs better
than a brute-force key recovery attack, the PRF security
level of the used hash function or block cipher is n bit
(i.e., log(tPRF/ϵPRF) = n). This justifies the assumption that
κ ≤ 2.

Another point for a practical implementation is the
private key size of ℓn bits. We can use F (n) to reduce
the private key size to n bits, using pseudorandom key
generation. This can be done using the construction

sk = (sk1, . . . , skℓ)
= (fSeed(0), . . . , fSeed(ℓ− 1))
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where fSeed ∈ F (n) and Seed is the new n bit private key.
The security of this construction is shown in Buchmann
et al. (2011b).

6 Conclusions

We have provided three security reductions for W-OTS.
The first one shows that W-OTS provides a security level
of at least n− w − 1− 2 log(ℓw), if the security level of
the PRF property of the used function family is at least
n. This reduction is especially appealing because it can
be instantiated using any cryptographic hash function or
block cipher. As a block cipher with n bit key and block
size is normally assumed to provide n bit security against
distinguishing attacks this justifies our assumption of κ ≤ 2
given Lemma 2.6. The same holds for hash functions with
n bit output. When using n = 128 (i.e., AES) and w = 16
the security level of W-OTS is at least 91 while the size of
a signature is 560 bytes. The more conservative approach
of using n = 160 (i.e., SHA-1) yields a security level of at
least 129, which guarantees long-term security but results
in larger signatures of 860 Bytes.

However, this reduction does not guarantee strong
unforgeability, except in case of κ = 1 meaning that no key
collisions exist. If no key collisions exist, each message
has a unique signature and the scheme is trivially SU-CMA
when it is EU-CMA. Showing SU-CMA in general requires
that the underlying functions are either SKR or KCR. This
has been shown in the second and third reduction. The
security level of W-OTS is at least n− w − 1− 2 log(ℓw)
if the security level of the SKR property of the used
PRF is at least n− log(κ− 1). When using KCR, the
security level of W-OTS is at least (n− 1)/2− 1 if the
security level of the KCR property of the used PRF is at
least (n− logκ)/2− 1. We remark that the last reduction
also works with the original Winternitz construction using
a family of collision resistant hash functions. In other
words, W-OTS is SU-CMA if the used function is collision
resistant. However, using a PRF with additional KCR
property has the benefit that an exact value for the
maximum number κ of key collisions that occur within the
family is known. This is required for the estimation of the
exact security level.

As a by-product we have defined three key-based
security notions for function families: KOW, SKR, and
KCR. We have analysed implications and separations
among these properties and pseudorandomness. Although,
these relations have not been analysed before, they support
the common intuition. In fact, key-based and non-key-based
notions share an analoguous hierarchy of implications and
separations with respect to preimage resistance, second
preimage resistance, and collision resistance. We refer the
reader to Rogaway and Shrimpton (2004) for a discussion
on non-key-based notions.

We would like to point out that KCR functions fk can
easily be obtained from collision resistant functions gk by
defining fk(x) = gx(k). If we require f to inherit the PRF
property of g, we have to assume that the compression

function of g is dual-PRF, meaning that it is a PRF
regardless of which input it is keyed with. This is also a
requirement of the security proof of HMAC (Bellare, 2006).
SKR functions can be constructed equivalently while the
KOW property is immediately implied by the PRF property.
While we have shown the separation of PRF and KCR,
we leave the suspected separation of PRF and SKR as
an open problem. Moreover, we have studied the relation
between the security level of a PRF and the maximum
number of key collisions that can occur. A deeper analysis
of the number of key collisions of a function family is an
interesting topic for future work.
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