Transient response and entropy generation minimisation of a finite size radiation heat shield with finite heat capacity and temperature-dependent emissivities
by Abdul Aziz; Mohsen Torabi
International Journal of Exergy (IJEX), Vol. 12, No. 1, 2013

Abstract: The paper presents a numerical study of the transient response of a rectangular radiation heat shield inserted between two planes, grey, diffuse, parallel, rectangular surfaces. The radiation shield is assumed to have different emissivities on its top and bottom surfaces, and both are assumed to be linear functions of temperature. A specific configuration is investigated in detail to highlight the transient as well as the steady state thermal characteristics of the system. The paper derives an equation to calculate the steady state shield temperature for minimum entropy generation. Results are presented in graphical or tabular forms.

Online publication date: Mon, 11-Mar-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com