Thermodynamics of climate change
by Asfaw Beyene; Ron Zevenhoven
International Journal of Global Warming (IJGW), Vol. 5, No. 1, 2013

Abstract: Climate modelling is discussed from a thermodynamic point of view, using a control volume approach in which the environment and a superficial layer of the earth form the volume, concentric spherical shell of predominantly gaseous content with a thin layer of the earth. An energy equation that includes anthropogenic heat is suggested based on the mass balance of fossil fuel introduced into the control volume. It is argued that the use of temperature as a climate change indicator should be deemphasised since other thermodynamic coordinates including pressure, wind speed, humidity, etc. are just as important. The concept of Equivalent Rate of Evaporation (ERE) is introduced to better estimate the impact of enthalpy of vaporisation on climate change. This approach offers a more lucid understanding of the climate model, with indubitably more accurate results.

Online publication date: Fri, 28-Feb-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com