Processing and characterisation of two- and three-phase polymer-based nanocomposites for energy storage applications
by Emna Helal; Zoubeida Ounaies; Amira B. Meddeb
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 7, No. 5, 2012

Abstract: The aim of this work is to process and characterise nanocomposites which combine the advantages of a flexible lightweight polymer matrix (polyvinylidene fluoride, PVDF), the high conductivity of single wall carbon nanotubes (SWNTs) and the attractive dielectric properties of titanium dioxide (TiO2) nanospheres, to simultaneously achieve improved dielectric constant and low dielectric loss. The effect of nanoparticles and the effect of the heat treatment on the evolution of the phase, crystallinity and dielectric behaviour of the polymer host are investigated. In particular, a transition from γ to α phase due to heat treatment is identified. In addition, the crystallinity of three-phase composites is found to decrease compared to the corresponding two-phase composites indicating a possible interaction between SWNTs and TiO2 nanofillers. Furthermore, an improvement of the permittivity is achieved in all nanocomposites at low frequencies and attributed to interfacial and orientation polarisations and to the heat treatment.

Online publication date: Mon, 10-Dec-2012

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com