Control of interfacial properties in power electronic devices
by Masakatsu Maeda; Yasuo Takahashi
International Journal of Nanotechnology (IJNT), Vol. 10, No. 1/2, 2013

Abstract: The present paper describes processes to control structures and properties of two interfaces in the next-generation power electronic devices. The first is the interface between semiconductors and contact electrodes. Processes to synthesise Ohmic conducting interfaces for p-type SiC and n-type GaN developed by the authors are shown. Ti3SiC2 contact layer is formed on SiC by controlled interfacial reaction between SiC and Ti/Al bilayer using a stepwise heating scheme. On the other hand, it is shown that formation of Ti(C, N) contact layer on GaN can be enhanced by using TiC as a precursor for the interfacial reaction between GaN and Ti. The other interface is that between electrodes and wires. Heat resistant, ductile and highly electric conductive interfaces between Cu ribbons and Sn-coated Cu pads are formed by ultrasonic bonding.

Online publication date: Fri, 07-Dec-2012

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com