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Abstract: Probability models for rare, outlier and extreme outcomes  
are different than the Gaussian (normal) distribution commonly used in 
management research. This paper illustrates the theoretical basis and 
implementation of these concepts. One example uses data on organisational 
size and compensation of CEOs in large US corporations in order to illustrate 
rare and outlier outcomes. Models that fit the data on these variables are  
very different than the Gaussian distribution, so mean, standard deviation  
and correlation are useless here. Another example uses data collected  
from business executives’ economic forecasts shortly after the 9/11 terrorist 
attacks to illustrate how to identify extreme outcomes and a Bayesian approach 
for inferring relationship between extreme outcomes and strategy type. 
Differentiations between extremes and rares are illustrated using data simulated 
by a Monte Carlo method. Visualisation of fit of a model for data by Q-Q plot 
and discussion of distributional testing precedes some concluding remarks. 
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1 Introduction 

Statistical analyses of management phenomena usually employ the Gaussian model of 
the bell-shaped normal curve for the data. The dominance of Gaussian statistics for nearly 
a century has deeply penetrated our thinking and shaped scholars’ views on the notions of 
typical, outlier, rare, and extreme data points, as well as the relationships between 
variables. A great scientist, Carl Friedrich Gauss, in 1809 discovered the normal 
distribution as a way to rationalise the method of least squares for estimating a quantity 
measured with errors. Later, it was discovered that under certain conditions the 
distributions of variables constituted by sums (and averages) of a large number of 
variables tend to the Gaussian distributions (central limit theorems). These formed the 
foundations for statistical measures and methods that are useful for applications  
when measurements are like Gauss’s error and the conditions of the central tendency 
hold. 

In the Gaussian world, the frequency of measurements resembles a nicely behaved 
distribution having a unique symmetric shape, a unique centre where the centre of gravity 
of the distribution (mean), the 50%–50% divide (median), and the most frequent outcome 
(mode) are the same point, a measure of spread (standard deviation, SD) that determines 
the proportions of distribution around the centre, and no marked gap is expected between 
the data points. With a Gaussian model, any data point beyond three SD or so is 
suspiciously different and usually thought to be recorded incorrectly or else generated 
from a different distribution such as another Gaussian having a different mean or 
different SD. In the Gaussian world, one variable is either related to another variable only 
through its mean (regression function) linearly or the variables are independent – one 
variable has no predictive power about the other. Since no other relationship is possible, a 
single parameter (correlation) can map the strength of the only possible relationship 
between the variables. Yet the underlying phenomena of interest might actually be 
generated by probability distributions very different from the Gaussian model (McKelvey 
and Andriani, 2005; Andriani and McKelvey, 2007; O’Boyle and Aguinis, 2012), so that 
the usual measures such as mean, variance and correlation are not useful or may not be 
defined (being infinite). In this paper, we illustrate several different distributions 
including heavy-tail ones that can generate outcomes with marked gaps between them, 
and for which the mean, variance and correlation are not defined. 
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The three terms of rare, outlier and extreme are often used interchangeably. For 
example, a special issue of Organization Science focusing on rare events notes that “Rare 
events are often set aside as statistical outliers” [Lampel et al., (2009), p.835]. This paper 
provides readers with a way to think about the meaning of rare, outlier and extreme data 
points in a statistical analysis. Recall that for a statistical inference the data are viewed as 
being a random sample of observations generated from a probability distribution. This 
view is key to this thinking about the probability distribution. Rare and outlier 
observations or data points can be visually seen on plots as those outcomes that are 
substantially distant from the mass of the data. If such data points are not erroneously 
recorded, then they are outcomes generated from a probability distribution. We will 
illustrate that a seemingly uncommon observation can be produced along with the mass 
of data by a single probability distribution markedly different from a Gaussian model. A 
seemingly unusual rare outcome can be a legitimate outcome of a probability distribution 
whose tail decays slowly, referred to as a heavy-tail distribution. A seemingly unusual 
outlier can be a legitimate outcome of a probability distribution that is a weighted average 
of two or more distributions, where the weight of one of the distributions relative to the 
others is very high, which is the underlying distribution of the mass of outcomes. Such 
distributions are referred to as mixture distributions, sometime referred to as a 
contaminated distribution. Some heavy-tail distributions that can produce a rare outcome 
are also mixture distributions in a mathematical sense. This duality provides a plausible 
explanation for the common feature of rare and outlier as being outcomes substantially 
distant from the mass of the data. In this paper we illustrate the distributional issues 
pertaining to rare and outlier outcomes using data on some typical variables of 
management research. We include an Appendix for a brief visual comparison of several 
distributions; more details and references can be found at Wikipedia (Heavy-tailed 
distribution and Mixture distribution). 

Extreme outcomes in a sample refer to outcomes that are farthest from the centre 
(median) of the data, namely the sample minimum and maximum. Thus, an extreme 
outcome is not necessarily far distant from the mass of the data. The data can be a 
random sample from a Gaussian or any other distribution. Yet the distribution of a 
sample extreme point, say maximum, is related but very different than the distribution 
that has generated the entire sample. For example, the distribution of the maximum of a 
Gaussian sample is not a Gaussian distribution. Consequently, the traditional Gaussian 
methods are not applicable for making inferences about extremes. In this paper, through a 
management research example, we illustrate data points that may be considered as 
plausible outcomes of the distribution of sample minimum or sample maximum, hence, 
inferred as extremes. We also illustrate making inference about the relationship between 
extremes of one variable with a covariate variable. Details for these procedures are given 
in Nystrom et al. (2010). Methods for statistical analyses involving rare, outlier and 
extremes are abundant and lie beyond the scope of this paper; for examples, see Beirlant 
et al. (2004), Coles (2001), Resnick (2007), and Schwertman and de Silva (2007). Also 
see McKelvey and Andriani (2005), Andriani and McKelvey (2007), and Schwab et al. 
(2011). 

The next section illustrates rare and outlier outcomes through an example of 
organisational size and compensation data for top-paid CEOs of large US companies. 
This Section 2 also presents summary measures suitable for data containing rare and 
outlier outcomes. Section 3 presents models for extremes and it illustrates our method for  
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computing thresholds that identify extremes using a management example that focuses on 
the economic forecast accuracy of business executives after the 9/11 jolt. This 
management example also shows how to analyse an association with a covariate 
(strategy) by using a Bayesian approach and it also illustrates differences between 
extreme and rare outcomes by using a Monte Carlo simulation method. Section 4 presents 
an extension for considering order statistics – such as deciles or quartiles – illustrated 
with data from a study on the organisational implementation of new technologies.  
The penultimate Section 5 presents ways to visualise and test model fit. Section 6 
provides some concluding remarks. An Appendix provides examples of probability 
models suitable for data containing rare and outlier outcomes in contrast with the 
Gaussian mode. A second Appendix shows measurement of forecast inaccuracy that we 
use in Section 3. 

2 Organisational size and CEO compensation 

This section illustrates rare and outlier outcomes using data on two organisational size 
variables and two CEO compensation variables for the 50 top-paid CEOs of large US 
companies in 2006. The organisational size data are from Fortune magazine’s annual 
report on the 500 largest US companies. The compensation data are from Forbes 
magazine’s annual report on top-paid 500 CEOs of US corporations. The size variables 
studied are total sales and total assets. Forbes defines CEOs’ total compensation as the 
sum of salary, bonuses, perks (such as company-paid club memberships), vested stock 
grants, stock gains, and the value realised by exercised stock options during the year. 
Exercised stock options now usually account for most of the ‘additional compensation’ 
beyond the ‘salary and bonus’ component. The amounts of compensation received by 
many CEOs of US’s largest companies have been characterised as being excessive, 
insufficiently performance-based, unfair and dysfunctional (e.g., Bebchuk and Fried, 
2004; Dittmann and Maug, 2007; Dow and Raposo, 2005; Harris and Bromiley, 2007; 
Jensen et al., 2004; Lie, 2005; Siegel and Hambrick, 2005; Tosi et al., 2000; Wade et al., 
2006). 

Table 1 Summary statistics for organisational size and compensation variables for the 50 top-paid 
CEOs in 2006 

 n Minimum Q1 Median Q3 Maximum Mean S.D. Skewness 
Organisational 
size($billions) 

         

Sales 47 1.5 5.79 15.7 46.71 167.6 28.3 34.0 2.19 
Assets 47 1.5 8.60 32.4 104.30 1459.7 158.2 329.4 2.88 
Compensation 
($millions) 

         

Salary and 
bonus 

50 0.000001 3.08 5.0 9.04 32.2 7.7 7.2 1.69 

Additional 
comp 

50 9.2 27.30 38.4 65.70 646.6 71.9 103.9 4.08 



   

 

   

   
 

   

   

 

   

   10 P.C. Nystrom and E.S. Soofi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 shows the summary statistics for the data. Q1 and Q3 are the first and third 
quartiles. Note that the Q1 and median of each variable is substantially closer to the 
minimum than the Q3 and median to the maximum. These measures together indicate 
that the distributions of these variables are markedly skewed, which is also confirmed by 
the high coefficients of skewness. Thus, unlike for Gaussian data, the mean and SD 
reported in the table are useless and possibly meaningless (as shown in Section 2.2) as 
descriptive measures for the underlying distributions of these variables. 

Management researchers often perform log transformation on the data having skewed 
distributions as a way to perform analyses using methods that require the Gaussian model 
assumption. Figure 1 shows dot plots for the organisational size variables and their 
natural logarithm in Panels (a) to (d) and shows dot plots for the components of the  
CEO compensation and their natural logarithm in Panels (e) to (h). Dot plot is a 
histogram-type display that shows individual data points for moderate sample sizes, 
hence is suitable for visualisation of rare, outlier, and extreme outcomes. The horizontal 
scales of the graphs are different due to the ranges of the sampled data. 

Figure 1 Panels (a) to (d) Dot plots of organisational size variables ($ billions) and their natural 
logarithm for organisations led by the 50 top-paid CEOs in 2006 (see online version  
for colours) 
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Figure 1 Panels (e) to (h) Dot plots of compensation variables ($ millions) and their natural 
logarithm for organisations led by the 50 top-paid CEOs in 2006 (see online version  
for colours) (continued) 
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In Figure 1, the plot of raw data for each variable is juxtaposed with the plot of its  
log-transformed version below it. The raw data plots show that the distributions of all 
four variables are skewed to various degrees. The points circled in red in Panels (a), (c), 
(f) and (g), are far from the mass of data, which a researcher might think are rare or 
outlier observations. The juxtaposition clearly highlights that log transformation can 
resolve some problems of data points that look like outliers as raw data in Panels (a), (c) 
and (g), and can uncover an outlier in log transformed data [Panel (f)] that was not 
apparent in raw data [Panel (e)]. While the distributions of the raw data for these four 
variables are highly skewed, the distributions of the log-transformed variables seem fairly 
symmetric for three of them [Panels (b), (d) and (h)], but the distribution of the log of 
Salary and bonus [Panel (f)] is symmetric for the mass of outcomes except for a single 
point which stands alone from the mass. Although the points circled in red in Panels (a), 
(c), (f) and (g) are distant from the mass of data, the circled points in Panels (a), (c) and 
(g) look to be parts of the overall patterns of the respective plots. In each of these three 
panels, we see an interval of high frequency points followed by clusters of a few points 
that appear in decreasing sizes and increasing spread from each other progressively. But 
the circled point in Panel (f) is not part of any pattern of separation from the mass of 
points. This contrast illustrates the difference between samples that might be generated 
from a single probability distribution [Panels (a), (c) and (g)] and a sample that might be 
generated from a mixture of two distributions [Panel (f)], see Appendix 1. 
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The point circled in red in Panel (f) represents Apple Computer, Inc. As seen in  
Panel (f), Apple is far distantly smaller than the other 49 data points, those being tightly 
clustered resembling a bell-shaped distribution. In 2006, Steve Jobs as CEO of Apple 
Computers, Inc. received one dollar of salary: Is $1 an outlier when compared with the 
other CEOs amongst the top-paid 50? The dot circled in red in Panel (g) is also Apple. 
Steve Jobs received the highest amount of ‘additional compensation’ ($646.6 million) 
whereas the #2 ranked CEO received about half that amount: Is $646 million an outlier 
when compared with the other CEOs included in the top-paid 50? If a researcher was to 
arbitrarily conclude that Apple is an outlier and then exclude Apple, it would limit 
inferences that can be made. We think that it would be preferable to be able to make 
inferences about Forbes top-paid CEOs by including Apple rather than excluding it. 

2.1 Models for the variables 

Are the circled points in Figure 1 outlier or rare outcomes? The answer to this question 
depends on whether a single probability distribution could describe variations of the 
entire data points in a panel or not. For this purpose, we test whether a probability 
distribution does or does not provide an acceptable fit to the data in each panel. The 
standard assumption for statistical analysis is that a sample of measurements x1, x2,…, xn 
are observations on random variables X1,…, Xn generated independently from a 
probability distribution function FX for all i = 1,…, n. Strictly speaking, our sample is not 
such a random sample, but it dramatically illustrates some important features of typical 
data on top-paid CEOs of large US companies. We proceed under the above standard 
assumption for the purpose of illustration. Various tests of distributional fit are available. 
We use the Anderson-Darling (A-D) test, which nowadays is one of the most common 
goodness-of-fit tests; more details are given in Section 5. 

Table 2 shows the model-fitting results for the organisational size and CEO 
compensation variables. The upper panel of Table 2 gives the results for the log-normal 
model. The distribution of a variable X is said to be log-normal if the distribution of its 
log transformation Y = log X is normal. In other words, a researcher is fitting a normal 
model to the log-transformed data. The log-normal model has two parameters, referred to 
as the location and scale parameters which are respectively the mean and SD of the log-
transformed data. The lower panel of Table 2 shows the results for log-logistic model. 
Analogous to the log-normal model, the distribution of a variable X is said to be  
log-logistic if the distribution of its log transformation Y = log X is logistic. The  
log-logistic model is also a type of Pareto distribution called Type III Pareto where the 
Pareto exponent parameter equals inverse of the log-logistic scale. (The models are 
discussed in Appendix 1). The columns of Table 2 give the following information. The 
‘Model fit test’ column gives the A-D statistic for each model, the A-D being a measure 
of discrepancy between the empirical distribution of the data and the distribution of the 
model (see Figure 6 in Section 5). This is a lack-of-fit statistic, so a large value of the  
A-D statistic rejects the fit of the model. The critical value of the A-D test for rejecting a 
log-normal is different than that for a log-logistic model. In the ‘Model fit acceptable’ 
column, ‘Yes’ indicates that the lack-of-fit (discrepancy between the empirical and 
model’s distributions) is not statistically significant at 10% level. That is, the test does not 
reject the model, so the model is acceptable at 10% level. A ‘No’ in this column indicates 
that the lack-of-fit (discrepancy between the empirical and model’s distributions) is 
statistically significant at 1% level. That is, the test rejects the model, so the model is not 
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acceptable at 1% level. A ‘Barely’ indicates that the P-value of the test is barely above 
1% so the model is acceptable at 1% level. An ‘Okay’ indicates that the P-value of the 
test is slightly below 5% so the model is acceptable at 4% level. The last two columns 
give estimates of the model parameters. 
Table 2 Model tests for organisational size and CEO compensation variables 

Model fit Model fit Model parameters  

Test  
(A–D) 

Acceptable 
(Level) Location Scale  

(Pareto exponent) 
Log-normal     
 Sales 0.298 Yes (10%) 2.71 1.19 
 Assets 0.564 Yes (10%) 3.49 1.78 
 Salary and bonus 6.890 No (1%) 1.40 2.40 
  Data + $0.82 million 0.349 Yes (10%) 1.85 0.78 
 Additional compensation 1.380 No (1%) 3.82 0.84 
  Data – $6.57 million 1.010 Barely (1%) 3.59 1.02 
Log-logistic (Pareto)     
 Salary and bonus 1.299 No (1%) 1.66 0.71 (1.41) 
  Data + $0.43 million 0.257 Yes (10%) 1.75 0.48 (2.08) 
 Additional compensation 0.975 No (1%) 3.76 0.45 (2.22) 
  Data – $7.73 million  0.685 Okay (4%) 3.50 0.57 (1.75) 

As seen in Table 2, a log-normal model is acceptable for each of the size variables. That 
is, the log-transformed data for both sales and assets do have acceptable fits with the 
Gaussian model. In other words, these transformed data on organisational size [Panels (b) 
and (d) of Figure 1] do not contain rare or outlier observations. However, this cannot be 
said about the original (untransformed) size data that include observations markedly 
distant from the mass of the data [Panels (a) and (c) of Figure 1]. But we find that  
the variation of the entire data points in each of Panels (a) and (c) of Figure 1 can  
be described by a single log-normal model, so the circled points in these panels are  
not outliers. A log-normal distribution allows such occurrence with some low but  
non-negligible probabilities since its tail decays slowly (a heavy-tail distribution). Such 
observations may be classified as rare outcomes. Consequences of the Gaussian model 
fitting the log-transformed data will be discussed in sequel (see Section 2.2 and Point 1 in 
Section 2.3). 

As seen in Table 2, the log-normal model does not fit the data on the compensation 
variables for all 50 organisations. Next we consider the log-normal model which includes 
a third parameter. This parameter shifts the start of the probability distribution from zero 
to a positive or negative value. For instance, as seen in Table 2, after a shift from zero to 
+$0.82 million a log-normal model fits the entire data on the Salary and Bonus with 
Apple included. This means that a log-normal distribution which starts at $0.82 million 
fits the Salary and Bonus. That is, the variation of the entire data points in Panel (e) of 
Figure 1 can be described by a single log-normal model, so the circled points in these 
panels are not outliers for this distribution. Such observations may be classified as rare 
outcomes. However, this transformation is consequential for interpretation of the results 
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of analysis based on such a model. For the Additional Compensation, a log-normal model 
does not fit the data even with inclusion of a negative shift from zero to –6.57 million, a  
log-normal model only barely fits the entire data (lack-of-fit is not significant at 1%). 
Thus, we proceed on with examining other models. 

As seen in Table 2, for the salary and bonus data [Figure 1(e)], the fit of log-logistic 
is also rejected. Note that the Pareto exponent is 1.41 = 1/0.71. As in the log-normal case, 
including a shift parameter allows the start of the log-logistic distribution to take a 
positive or negative value rather than being set at zero. Table 2 shows the results for a 
shift from zero to +$0.43 million. With this shift, the fit of a log-logistic model for all 50 
Salary and Bonus data points becomes excellent. For the additional compensation data, 
the fit of log-logistic model with two parameters is also rejected. With a shift from zero 
to –$7.73 million, the fit of a log-logistic model for all 50 additional compensation data 
points becomes acceptable (lack-of-fit is not significant at 4%). We examined numerous 
other models and found that some more complex models (Burr distributions with four 
and three parameters, Dagum distributions with four and three parameters, and 
Generalised Extreme Value distribution) fit the data better than the log-logistic with three 
parameters. Thus both components of Apple’s CEO compensation package may be 
viewed as plausible outcomes of the respective log-logistic distributions that fit all 50 
data points. That is, the variation of the entire data points in each of Panels (e) and (g) of 
Figure 1 can be described by a single log-logistic (Pareto) model. As such, the circled 
points in these panels are not outliers for the shifted log-logistic (Pareto) model. 
However, in order to include Apple in an analysis based on such models, we need to first 
add $43 thousand to each of the Salary and Bonus of each CEO and subtract $7.73 
million from the additional compensation of each CEO. 

Table 3 shows the model-fitting results for the compensation variables when Apple is 
excluded [point circled in red in Panels (f) and (g) of Figure 1]. Then both the log-normal 
model and log-logistic model fit the salary and bonus component equally good. Hence, 
the Salary and bonus component of the Apple’s CEO compensation is an outlier for these 
models. However, these models barely fit (lack-of-fit is not significant at 1%) the 
additional compensation component of the Apple’s CEO. Table 3 also shows that the log-
normal model with a negative shift from zero to -$5.47 million is barely acceptable and 
the log-logistic model with a negative shift from zero to -$7.05 million provides an okay 
fit. 
Table 3 Model tests for CEO compensation variables (Apple excluded) 

Model fit Model fit Model parameters  

Test (A-D) Acceptable 
(Level) Location Scale  

(Pareto exponent) 
Log-normal     
Salary and bonus 0.266 Yes (10%) 1.71 0.86 
Additional compensation 1.080 No (1%) 3.77 0.76 
Data– $5.47 million 0.848 Barely (2.5%) 3.59 1.02 
Log-logistic (Pareto)     
Salary and bonus 0.258 Yes (10%) 1.69 0.49 (2.04) 
Additional compensation 0.820 Barely (1%) 3.70 0.41 (2.44) 
Data – $7.05 million (n = 49) 0.604 Okay (7.5%) 3.49 0.51 (1.96) 
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2.2 Beyond Gaussian measures and methods 

The traditional measures (the mean, SD, and correlation coefficient) and methods such as 
the ordinarily least squares (OLS) regression are highly sensitive to data points that are 
far distant from the mass of data. The traditional summary measures generally reported 
by management researchers do not provide useful information much beyond the Gaussian 
model and are not applicable for some heavy-tail distributions, such as Pareto with 
exponent parameter 2. Thus, inferences based on the OLS are not applicable to such data 
distributions. Descriptions of methods that are suitable for analysis of such data are 
beyond the scope of this paper. Here we provide a brief presentation of some measures 
suitable for such data. 

Measures that are based on rank and percentile such as median, quartiles, range, and 
interquartile range (the range between the first and third quartiles) are applicable to all 
distributions. A useful property of these latter measures is their properties under 
monotone transformations of the data such as log-transformation. For example, when 
data on a variable X is log-transformed to Y = Log X, the median of Y = Log (median of 
X). However, this does not hold for the mean and SD. 

Like the mean and SD, the correlation coefficient does not provide useful information 
much beyond the Gaussian model and is not applicable for some heavy-tail distributions. 
Recall that the correlation coefficient measures how tightly points on a scatter plot are 
clustered along a line. Also recall that when data are generated by a bivariate normal 
distribution, the points on the scatter plot resemble an ellipse. Now, consider the scatter 
plots of data on the organisational size variables shown in Panel (a) of Figure 2. The 
points are not clustered along a line nor do they resemble an ellipse; furthermore, an 
observation (circled in red) is far from the mass of points. Consequently, the correlation 
coefficient for the data is Corr(X, Y) = 0.66, but this does not provide information about a 
linear relationship as often interpreted. Panel (b) of Figure 2 shows the scatter plot for the  
log-transformations of these size variables. The points are clustered along a line and the 
seemingly outlying observation (circled in red) of the original data is now close to the 
mass of points. The correlation coefficient for the transformed data is Corr(Log X,  
Log Y) = 0.83, which now is measuring the degree of tightness of the transformed data 
points along a line. Here, we see that the correlation coefficient changes when the 
variables are transformed non-linearly such as log-transformation. However, since 
correlation coefficient is not invariant under all monotone increasing transformations, the 
strength of linear relationship (Corr(Log X, Log Y) = 0.83) in Panel (b) does not translate 
into the same strength of linear relationship between the sales and assets (Corr(X, 
Y) = 0.66). In general, one correlation could be statistically significant while the other is 
not. Measures of the strength of association between two variables are invariant under all 
monotone increasing transformations. Examples include Kendall’s tau and Spearman’s 
rho. For example, Spearman’s rho is a correlation coefficient between the ranks of  
two variables. Since log-transformation is a monotone increasing transformation, 
Spearman’s rho for plots in Panels (a) and (b) of Figure 2 is the same (Spearman’s rho(X,  
Y) = Spearman’s rho(Log X, Log Y) = 0.88). Thus we can conclude that there is a positive 
association between organisational sales and assets. 

Panels (c) and (d) of Figure 2 show scatter plots of the two components of CEO 
compensation data and their natural logarithm with an observation (circled in red) far 
from the mass of points. As it was shown in Table 2, the model that fit the additional 
compensation variable is a heavy tail (Pareto with exponent parameter 1.75), and thus the 
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correlation coefficient for the bivariate model for these variables is not defined. That is, 
the correlation coefficient computed from the data is meaningless. However, association 
measures such as Kendall’s tau and Spearman’s rho are defined for all distributions. For 
plots in Panels (c) and (d) of Figure 2, (Spearman’s rho(X, Y) = Spearman’s rho(Log X, 
Log Y) = –0.25), which indicates a negative association between the two components of 
CEO compensation. 

Figure 2 Scatter plots of organisational size and CEO compensation variables, (a) sales vs assets, 
(b) log (sales) vs log (assets), (c) additional comp vs salary and bonus, (d) log 
(additional comp) vs log (salary and bonus) (see online version for colours) 
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2.3 Implications 

From our model-fitting analysis, we can conclude as follows: 

1 For the organisational size variables (Sales and Assets), log-normal distributions 
with two parameters are suitable. Hence, the Gaussian methods are not directly 
applicable to these variables. The log-transformation provides an option for the use 
of Gaussian methods. A researcher could proceed to use conventional Gaussian 
statistical methods to analyse these log-transformed data further. However, the 
results of such methods must be interpreted accordingly, as discussed in Section 2.2. 

2 For salary and bonus, the log-normal distribution with two parameters is not suitable. 
Hence, the Gaussian methods are not directly or indirectly applicable to this variable. 
Apple is an outlier for the log-normal distribution. With removing Apple, Gaussian 
methods become applicable to the log-transformed data. However, a) the results of 
such methods must be interpreted in terms of the transformed variables, and b) the 
inferences should be limited to a subset of top-paid CEOs, not to the entire 50  
top-paid CEOs. With a further transformation (first adding $426 thousand to the 
salary and bonus of each CEO and then taking log), Gaussian methods become 
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applicable to the transformed data, although the results of such methods must be 
interpreted accordingly. 

3 For the additional compensation, log transformation even with Apple removed 
cannot make Gaussian methods applicable. Log transformation of the additional 
compensation minus $7.73 million barely makes Gaussian methods applicable to 
analysis of this variable. However, the results of such methods must be interpreted 
accordingly and also very cautiously. 

4 Overall, the results in Tables 2 and 3 indicate that the data generating distribution 
with the Apple data included is too complex even to the extent that the fit of a Pareto 
model requires data distortions (adding and subtracting the components of the CEO 
compensation). Without such distortions or moving to a more complex model, we 
can conclude that Apple might be generated from a different distribution other than 
the mass of the data. That is, the data generating distribution is a mixture of two 
distributions, which makes Apple an outlier with respect to the distribution of the 
other 49 top-paid CEOs. Even so, researchers who seek to make inferences based on 
the entire data set ought to avoid the common, simplifying action of trimming out 
data that initially look like outliers. Implementing some inferences based on a model 
that fits the entire data may require more complicated and advanced inferential 
methods. Preferable options are non-parametric and robust methods of inference 
(Schwab et al., 2011). Examples include bootstrap standard error and interval 
estimates, robust regression methods such as the least absolute deviation,  
non-parametric regression and ANOVA, and generalised least squares fit  
functions, which are available in statistical packages. 

3 Executives’ forecast accuracy after 9/11 jolt 

Organisations’ environments occasionally deliver a jolt that requires executives to  
make sense out of the new situation before they decide what actions to take in response 
(Meyer, 1982; Meyer et al., 1990; Weick, 1995). A company’s strategy could shape 
environmental scanning and sense making (Garg et al., 2003; Yasai-Ardekani and 
Nystrom, 1996). Moreover, the type of strategic milieu inhabited by executives could 
affect their attentiveness to environmental changes as well as their ability to respond to 
changes in appropriate ways (Kiesler and Sproull, 1982). Attentiveness to environmental 
changes could lead to greater accuracy in forecasts, especially during periods of greater 
uncertainty. We focus here on whether organisations’ strategies (proactive versus 
reactive) are associated with the ability of their executives to forecast their future 
economic environments. 

We use data on the accuracy of economic forecasts made by a sample of executives 
shortly after the September 11, 2001 terrorist attacks on the World Trade Centre in New 
York City and on the Pentagon near Washington, D.C. The event and its aftermath 
constituted a widespread jolt to the national economy. Recall that this extraordinary event 
occurred after the US economy had ended a long period of high growth and had already 
lapsed into recession. Many executives and governmental leaders were expressing deep 
concerns about the uncertainty generated by this rare event. Executives were unsure 
about how these unprecedented attacks would affect the national economy. Executives 
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were also unsure about how the suddenly changed economic outlook would affect their 
firms. A disturbing scenario held that a pervasive increase in fear amongst the population 
could reduce consumer confidence and could alter household spending patterns – which 
could adversely impact future economic growth. 

Business executives could react to a predicted economic downturn by anticipating a 
reduction in demand for their company’s products or services, and might react by 
reducing their expenditures. In the aftermath of the 9/11 jolt, business executives were 
confronted with the task of quickly predicting potential changes in the economy and then 
assessing how those changes would affect their own organisations. Yasai-Ardekani and 
Nystrom surveyed executives regarding their companies’ reactions five months after the 
9/11 jolt. Data were collected from executives in 93 companies throughout the US; see 
Soofi et al. (2009) for details about the organisations included in the study. That study of 
the 9/11 aftermath included eliciting business executives’ forecasts for future economic 
conditions. A survey questionnaire provided executives with a paragraph describing the 
US economy’s GDP (Gross Domestic Product) and its rates of change in recent years and 
quarters, so that all respondents began with the same basic information. Each executive 
then forecasted the future economy one year after the attacks. Each executive also 
provided his or her likelihood estimates (expressed as percentages that totalled to 100%) 
of three possible future states of economy: growth, stagnation, decline. Their responses 
were the input to computation of a measure of forecast inaccuracy, which we based on 
the commonly used mean square error (MSE) of each executive’s forecast distribution; 
for details on measurement and examples characterising four executives, see Appendix 2. 

3.1 Extreme accurate and inaccurate forecasts 

Similarly to rare and outlier, the concept of extreme value involves comparison of 
magnitudes of data points. An extreme value refers to an outcome farthest away from the 
centre (median) of a set of measurements and need not to be far distant from the mass of 
data points. The set of sample outcomes, x1, x2,…, xn, arranged into an array of ascending 
order, y1 ≤ y2 ≤ … ≤ yn are referred to as the order statistics of the sample. The sample 
minimum y1 and maximum yn are referred to as extreme values. 

As noted in Section 2.2, a sample of measurements x1, x2,…, xn are observations on 
random variables X1,…, Xn generated independently from a probability distribution 
function FX for all i = 1,…, n. The distribution is not restricted to be any specific type 
(Gaussian, heavy tail, or mixture, see Appendix 1). Each sample of n observations drawn 
from a distribution FX gives a set of different order statistics. This sampling process leads 
to probability distributions for order statistics: y1 ≤ y2 ≤ … ≤ yn are observations from a 
set of random variables Y1 ≤ Y2 ≤ … < Yn. Their distributions Gj(yj), j = 1,…, n, are 
derived from the data-generating distribution FX, which is sometimes referred to as the 
parent distribution for Gj(yj). Note that the subscript j is the rank of Yj in increasing order. 
Unlike random variables X1,…, Xn, the order statistics Y1,…, Yn are neither independent 
nor identically distributed because of the inequalities among them. The distribution Gj(yj) 
is a function of its parent distribution FX, the sample size n, and the rank of Yj (the 
subscript j). Hence, unlike the rare and outlier cases, the distribution of extreme value 
does not solely depend on FX. 

Probability models for extreme values are distributions of Y1 and Yn, which can be 
found using direct probability arguments [see, e.g., DeGroot and Schervish, (2002), 
p.166]. The extreme value theory refers to approximations of the distributions of the 
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sample extremes when the sample size n is large (theoretically when n approaches 
infinity); see, for example, Beirlant et al. (2004) and Coles (2001) for theoretical 
developments and Baum and McKelvey (2006) for management applications. In a recent 
paper (Nystrom et al., 2010), we propose that a measurement xi be inferred as an extreme 
when it falls in a high probability interval under the distribution of one of the sample 
extrema, minimum or maximum; all data points falling within a high probability interval 
for an extreme value will be inferred indistinguishable with the respective extreme. When 
the parent distribution FX can be approximated by a known parametric distribution, 
computation of thresholds for identifying extremes is rather simple. 

In order to identify the forecast inaccuracies that can be inferred as extremes, we first 
find models that are plausible for the distribution of the data. That is, we find plausible 
models for the parent distribution FX, where X denotes the forecast inaccuracy variable 
(MSE). We find that a Weibull distribution with three parameters (Location = –2.45, 
Scale = 10.14, Shape = 3.93, see Appendix 1) provides an excellent fit to this data (A–D 
test = 0.493). A Weibull distribution is commonly used in extreme-value theory, 
reliability engineering and survival analysis. 

Figure 3 shows the dot plot of the 93 executives’ forecast inaccuracy (MSEs) 
superimposed by two density curves. The solid curve is for the Weibull distribution. The 
dashed curve in Figure 3 is the density curve for the distribution of sample maximum for 
n = 93 (the distribution of minimum is not shown because the height of its density 
distorts the graph). Vertical arrows flag the 95% thresholds for the extremes for the 
minimum (1.76) and for the maximum (11.43). These thresholds are computed using the 
MINITAB software codes given in Nystrom et al. (2010, pp.801–802). 

Figure 3 Dot plot of forecast MSE data superimposed by density functions of a three-parameter 
Weibull distribution and distribution of its maximum for n = 93 (see online version  
for colours) 

95%

Parent (Weibull)

Max (n=93)

11.431.760.00
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Proactive
Missing

Strategy Type

InaccurateAccurate  

As seen in Figure 3, three observations can be inferred as extreme low inaccuracy (that is, 
highly accurate forecasts) and two observations can be inferred as extreme high 
inaccuracy in forecasting. 

We also find that three other models fit the data satisfactorily: a normal distribution, a 
three-parameter log-normal distribution and a three-parameter gamma distribution. All 
four models that fit the data lead to the same results: three observations below the 95% 



   

 

   

   
 

   

   

 

   

   20 P.C. Nystrom and E.S. Soofi    
 

    
 
 

   

   
 

   

   

 

   

       
 

thresholds for the minimum and two observations above the 95% thresholds for the 
maximum. Furthermore, in the terminology of extreme-value theory, the Weibull parent 
distribution is in the domain of attraction of Gumbel extreme-value distribution; see, for 
example, Beirlant et al. (2004). The Gumbel model also confirms the same results. 
Hereafter, the three data points in the lower side will be referred to as extreme accurate 
(minimum MSE) forecasts and the two data points in the upper side will be referred to as 
extreme inaccurate (maximum MSE) forecasts. 

3.2 Forecast accuracy and company’s strategy 

Information about each company’s strategy is also indicated in Figure 3. Squares (blue) 
symbols represent those executives in companies with proactive strategies; circles (red) 
symbols represent those executives in companies with reactive strategies; and triangles 
represent the two executives with missing data on strategy. A proactive strategy 
(prospector or analyser types as described by Miles and Snow, 1978) focuses on 
monitoring conditions in the company’s environments, adapting quickly when market 
conditions shift, and introducing new products before its competitors. In contrast, a 
reactive strategy (defender or reactor types) emphasises a company’s present market 
niches, seeks to protect its current domain and often ignores or discounts the relevance of 
changes taking place in its industry. The data were collected as follows. Each strategy 
type is described by one of four paragraphs developed by Miles and Snow (1978). An 
executive check marks the one paragraph that best describes that executive’s 
organisation; none of the paragraphs show the type labels such as defender. As seen in 
Figure 3, all three extreme accurate forecasts are made by executives in companies with 
proactive strategies (blue squares) and both of the extreme inaccurate forecasts are made 
by executives in companies with reactive strategies (red circles). 

We use a Bayesian approach to infer more formally about the relationship between a 
company’s strategy and the probabilities that an executive’s forecast is extreme accurate 
or is extreme inaccurate. 
Table 4 Data for company strategy and economic forecasting accuracy 

Economic forecasting accuracy  
Strategy type 

Extreme accurate Not extreme Extreme inaccurate Total 
Proactive 3 58 0 61 
Reactive 0 28 2 30 

Briefly, a Bayesian approach is used to update a prior distribution into a posterior 
distribution of outcome probabilities. A prior distribution reflects beliefs about the 
distribution of a parameter before using the current data. The belief can be formed based 
on all available information, including the past empirical findings. Readers interested in a 
more detailed explanation of a Bayesian approach are referred to Zellner (1971) and Lee 
(1997). For examples of management analyses using a Bayesian approach, see Hansen et 
al. (2004), Hahn and Doh (2006), Soofi et al. (2009), and Nystrom et al. (2010). 

For implementation of the Bayesian, we cross-classify the executives according to 
their strategy type and the category of their forecast accuracy (extreme accurate, not 
extreme, extreme inaccurate). Table 4 shows the data. The sample proportion of extreme 
accurate forecasts made by executives of companies having a proactive strategy is  
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(3/61 = 0.049) and the proportion of extreme inaccurate forecasts made by these 
executives is (0/61 = 0). The corresponding sample proportions for executives of 
companies having a reactive strategy are (0/30 = 0) and (2/30 = 0.067). These sample 
proportions are the maximum likelihood estimate (MLE) of the following four 
conditional probabilities: 

• π1 = The probability of an extreme accurate forecast being made by an executive, 
given that this executive’s company has a proactive strategy, (MLE of π1 = 0.049). 

• π 2 = The probability of an extreme accurate forecast being made by an executive, 
given that this executive’s company has a reactive strategy, (MLE of π2 = 0). 

• π 3 = The probability of an extreme inaccurate forecast being made by an executive, 
given that this executive’s company has a proactive strategy, (MLE of π3 = 0). 

• π 4 = The probability of an extreme inaccurate forecast being made by an executive, 
given that this executive’s company has a reactive strategy, (MLE of π4 = 0.067). 

We are interested in the following comparisons: π1 versus π2 and π3 versus π4. We do 
these comparisons by inferring about the following differences: 

1 2 3 4  .DAccurate π π and DInaccurate π π= − = −  

A positive DAccurate implies that the probability of making an extreme accurate forecast 
for an executive of a company with proactive strategy (π1) is higher than the probability 
of making an extreme accurate forecast for an executive of a company with a reactive 
strategy (π2). A negative DInaccurate implies that the probability of making an extreme 
inaccurate forecast for an executive of a company with proactive strategy (π3) is lower 
than the probability of making an extreme inaccurate forecast by an executive of a 
company with a reactive strategy (π4). We compute the posterior odds in favour of 
DAccurate being positive against DAccurate being negative. 

In order to make inference about the above assertions, we follow the same Bayesian 
procedure that we used in Nystrom et al. (2010) for inferring about the probability of an 
extreme CEO compensation and the probability of an extreme performance of the firm. 
Here, we compute posterior odds in favour of π1 > π2 (for an executive in a company with 
a proactive strategy, the probability of extreme accurate forecast is higher than for an 
executive in a company with a reactive strategy) against π1 < π2 (for an executive in 
company with a proactive strategy, the probability of extreme accurate forecast is lower 
than for an executive in a company with a reactive strategy). For the inference about 
inaccuracy of prediction, we do similarly. 

The standard prior for Bayesian inference about a probability is a Beta distribution. 
Beta family of distributions have two parameters, say a and b, which provide  
various shapes (symmetric (a = b), left-skewed (a > b), right-skewed (a < b), U-shape  
(a = b < 1), the uniform (a = b = 1), and more). This flexibility allows choosing priors 
that reflect various beliefs about a probability of interest. For each probability π1, π2, π3, 
and π4 we use two different prior distributions: 

a a right-skewed Beta distribution (mode at zero), which reflects a belief that the 
probability of an extreme is relatively lower than the probability of a non-extreme 
outcome 
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b the uniform distribution, which reflects a belief that connotes ignorance about the 
probabilities of extreme accurate and extreme inaccurate forecasts. 

The beta family is also mathematically convenient in that the data only update the 
parameters of a Beta prior distribution by the sample size and the counts to produce a 
Beta posterior distribution. 

For our purpose of calculating P(π1 > π2) and P(π3 < π4) with a Beta distribution for 
each parameter, a formula is available (Lee, 1997) which was used by Nystrom et al. 
(2010). But the formula involves gamma functions and is tedious to evaluate. Instead, 
here we use a Monte Carlo simulations technique that gives very accurate results. Table 5 
shows the posterior probabilities based on the two different priors examined: a  
right-skewed beta distribution and a uniform distribution. All posterior probabilities are 
high. The ratio of P(π1 > π2) to P(π1 < π2) gives the posterior odds in favour of the 
hypothesis that π1 > π2. Since we are using the same prior for π1 and π2, the prior 
probability is P(π1> π2) = P(π1 < π2) = .5; in other words, we take an agnostic stance about 
the assertions and let the data decide. In this case, the prior odds = one and the posterior 
odds = Bayes factor. Interpretations of the grade of evidence for the Bayes factor are 
given in Kass and Raftery (1995). We can infer as follows: 

a The data provide ‘substantial’ evidence in favour of a higher probability of an 
extreme accurate forecast by an executive in a company with a proactive strategy as 
compared with an executive in a company with a reactive strategy; 

b The data provide ‘strong’ evidence in favour of a lower probability of an extreme 
inaccurate forecast by an executive in a company with a proactive strategy as 
compared with an executive in a company with a reactive strategy. 

Table 5 Posterior probabilities and posterior odds for comparison of probabilities of extreme 
accurate and extreme inaccurate forecasts for different strategies 

 π1 > π2 π3 < π4 
Posterior probability    
Right-skewed beta prior .844 .945 
Uniform prior .789 .962 
Odds in favour   
Right-skewed beta prior 5.41 (Substantial) 17.15 (Strong) 
Uniform prior 3.73 (Substantial) 25.32 (Strong) 

3.3 Extreme versus rare outcomes 

Our data on forecast inaccuracy did not contain any observation far from the mass of data 
that could be viewed as a rare or outlier outcome. Yet, from Figure 3 we inferred five 
data points as extremes (3 extreme low inaccurate and 2 high extreme inaccurate). In 
other kinds of samples, however, a rare observation could be inferred as being extreme or 
as not extreme; similarly, an extreme observation could be inferred as being rare or as not 
rare. We illustrate these distinctions between inferred extreme and rare by using two 
samples of size n = 100 simulated from the exponential distribution (0, 1) and two 
samples of size n = 100 simulated from the Pareto (0, 1, 1); see Panel (b) of Figure 9 and 
Table 6 in Appendix 1. Figure 4 shows dot plots of these four samples. Arrows mark the 



   

 

   

   
 

   

   

 

   

    Rare, outlier and extreme 23    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

95% thresholds of the upper extremes (UEs) calculated from the distributions of the 
maximums for these models. Panels (a) and (b) show plots for two samples from the 
exponential distribution. The exponential sample in Panel (a) includes three data points 
above thresholds for maximum (5.07), but the exponential sample in Panel (b) includes 
no observation above 5.07 that can be inferred as extreme high. The probability of 
obtaining a sample without inferred extremes based on 95% thresholds is 0.05. Thus by 
the law of large numbers, in the long run about 5% of samples are expected to include no 
extreme. (We simulated 10,000 samples of n = 100 and found 53 samples with no 
extreme observation). 

Figure 4 Dot plots of samples simulated from four distributions (n = 100; arrow shows 95% 
threshold for extremes and circle shows rare outcome) (see online version for colours) 
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Panels (c) and (d) in Figure 4 show plots for two samples from the Pareto distribution. 
The horizontal scales for these two panels are different. The Pareto sample in Panel (c) 
includes four data points above the threshold for the maximum (32.88), but the Pareto 
sample in Panel (d) includes no observation above 32.88 that can be inferred as extreme 
high. Yet both Pareto samples include data points (circled in red) that are distinctly apart 
from the others, which can be considered as rare of different degrees. 

In summary, Figure 4 shows instances where the maximum of a sample is an  
inferred extreme [Panel (a)], but may not be an inferred extreme due to the 5% error rate 
[Panel (b)]. When the data distribution is heavy tail, an inferred extreme might also be a 
rare outcome [Panel (c) highest three points] but an inferred extreme might also not be a 
rare outcome [also in Panel (c), the fourth point is relatively close to the fifth point]. 
Moreover, a rare outcome may not be an inferred extreme [Panel (d)]. We conclude that 
the labels of extreme and rare ought not be used interchangeably. 

4 Extension from extremes to percentiles 

Researchers interested in high-performing organisations and/or low-performing ones 
usually select organisations for inclusion by using sample deciles, quartiles, or other 
sample splits. Examples include Harris and Katz’s (1991) choice of quartiles for selecting 
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the highest performing firms and the lowest ones in a study of information technology in 
the insurance industry; Edmondson et al. (2001) choice of the seven highest scoring 
hospitals and seven lowest scoring ones arrayed along their implementation success 
index; and Siegel and Hambrick’s (2005) choice of the ten highest performing firms and 
the ten lowest ones in a study of pay disparity within top-management teams. 

Figure 5 Dot plot of hospitals’ implementation success index data and 95% thresholds for upper 
and lower extremes, deciles and quartiles (see online version for colours) 
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Thresholds for identifying outcomes in upper and lower percentiles, deciles, quartiles, 
and so forth can be calculated by using the same method discussed in Section 3.1 for 
identifying extreme outcomes. The distribution of the corresponding order statistic is 
substituted in place of the sample maximum or minimum when calculating the threshold 
for a specific percentile. 

In their study of 16 hospitals implementing new technologies, Edmondson et al. 
(2001) computed an implementation success index. This index ranges from 6 to 41 and 
the two middle scores are 23 and 24 (see Figure 5). They classified the upper seven 
hospitals as high implementation success and the lower seven hospitals as low 
implementation success. They excluded the two middle cases “both to reflect the location 
of step changes in the implementation success index and to avoid an arbitrary distinction 
between two adjacent sites in the middle” [Edmondson et al., (2001), p.693]. We show 
that researchers can use the thresholds based on high probability intervals under the 
distributions of the appropriate order statistics in order to provide cut-off points that assist 
those researchers who want to avoid making arbitrary choices during sample selection. 

Suppose a researcher seeks to select those organisations included in a sample that are 
plausibly in the upper 10% of the underlying population from which this sample was 
drawn as well as those in the lower 10% of that population. We begin by finding a model 
that fits the sample data. In this case, the normal distribution fits the data (mean = 21.5, 
SD = 10.1, A–D test AD = 0.377). Figure 5 shows the dot plot of the data and the 95% 
thresholds for upper extreme (UE) and lower extreme (LE). The figure also shows results 
from extending the analyses by using order statistics that identify the upper decile (UD) 
and lower decile (LD) as well as the upper quartile (UQ) and lower quartile (LQ). These 
thresholds enable a researcher to classify the hospitals under study according to the upper 
and lower relative positions that can be inferred for each. As can be seen in Figure 5, the 
threshold for the UD is a score of 27.9, which would lead to inclusion of five hospitals; 
the threshold for the LD is a score of 15.1, which would lead to inclusion of seven 
hospitals. 
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5 Quantile-quantile plot and distributional tests 

For checking the compatibility of a model with the data, statisticians often use a highly 
effective visualisation tool such as Q-Q (quantile-quantile) plot, which is available in 
statistical packages. (Quantile is synonymous with percentile). Figure 6 shows the Q-Q 
plots of salary and bonus data with the normal and three log-normal models of Table 2 
for this variable. On these Q-Q plots we have included the line y = x for use as the 
reference. When the model is correct, the points are clustered close to the line y = x. The 
coordinates of the points are data values (horizontal axis) and their expected values if the 
model were correct (vertical axis), i.e., the corresponding quantiles of the model. For 
example, the salary and bonus of the CEO of Fidelity National Financial is $22 million; 
its rank in increasing order is 46, which makes $22 million the 93rd quantile  
of the sample, approximately. (We computed this quantile using a simple formula  
p46 = (47–0.5)/50 = 0.93; several other methods are available). In the normal Q-Q plot 
[Panel (a) of Figure 6], the model 93rd quantile is z = 1.47 given in the normal table. The 
vertical scale may also be set as the probabilities instead of the quantiles. In that case, the 
plot is referred to as a probability plot. The Q-Q plots in Panels (a) and (b) of Figure 6 
show that there are substantial discrepancies between the points and the line for  
the normal and log-normal models. In Panel (c), Apple is excluded, so the points are 
clustered along the reference line. In Panel (d), the model is a log-normal that includes a 
shift parameter (like adding 0.82 $million to each data point), and the points are clustered 
along the reference line similar to Panel (c). 

Figure 6 Q-Q plots of salary and bonus variable, (a) all data points, normal (7.74, 7.23), (b) all 
data points, log normal (1.40, 2.37), (c) Apple excluded, log normal (1.71, 0.86), (d) all 
data points, (data+.82) log normal (1.85, 0.77) (see online version for colours) 
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Some packages include the parameter estimates, a fit statistic, and the P-value for  
the Q-Q plot. For example, MINITAB gives A-D, Kolmogrov-Smirnov (K-S), and 
Wilks-Shapiro (W-S) tests for the normal model and the A-D test for several other 
distributions. Our model-fitting results of the A-D tests are confirmed by the K-S test. 

The A-D, K-S, and W-S statistics are in the class of tests referred to as empirical 
distribution function (EDF) tests (Stephens, 1974, 1979). Recall that the empirical 
distribution function is also a CDF in the step-function form where each step begins at a 
data point and the height of each step is 1/n. Figure 7 exhibits the empirical CDF and the 
model CDF curves corresponding to the panels of Figure 6. Visually it is clear that there 
are substantial discrepancies between the empirical CDF and the normal CDF [Panel (a)] 
and between the empirical CDF and log-normal CDF in Panel (b). In Panel (c), Apple is 
excluded and the discrepancy between the empirical CDF and log-normal CDF is 
substantially reduced. The model in Panel (d) is a log-normal that includes a shift 
parameter (like adding 0.82 $million to each data point). This shift also substantially 
reduces the discrepancy between the empirical CDF and log-normal CDF. 

Figure 7 Empirical CDF (step-function) of salary and bonus variable and CDFs of four models 
(curves), (a) all data points, normal (7.74, 7.23), (b) all data points, log normal (1.40, 
2.37), (c) Apple excluded, log normal (1.71, 0.86), (d) all data points, (data+.82) log 
normal (1.85, 0.77) (see online version for colours) 
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The A-D and K-S statistics are two measures of discrepancy between the model (CDF) 
and the empirical CDF in terms of the vertical distances at the data points. The K-S 
statistic measures the discrepancy in terms of the maximum of these vertical distances. 
The A-D statistic measures the discrepancy in terms of a weighted average of these 
vertical distances. The weight for each data point is inversely related to the height of the 
model CDF at that point, hence A-D gives more weight to the points toward the tail. 
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The A-D, K-S, and W-S tests use individual data points and the corresponding 
expected points if the model were true. These tests are developed as alternatives to the 
classic chi-square test, which requires grouping the data into categories. Unlike the  
chi-square goodness-of-fit test, these three tests require neither 

a grouping data into categories nor 

b a large number of observations (the chi-square test requires more than five data 
points in each bin). 

In addition, Stephens (1974) shows that the powers of chi-square test for testing the 
normal and exponential models against several alternatives are the lowest as compared 
with the EDF tests. For these reasons, the classic chi-square test is seldom used in 
statistics literature since the 1980s and statisticians have been developing distributional 
tests that use individual data points instead of categories. The goodness-of-fit tests are 
sensitive to large sample size, but the chi-square test is even considerably more sensitive 
to the sample size. It is well known that a very large sample generally leads to large chi-
square statistics, hence statistically significant lack-of-fit and rejection of any model for 
the data. When a lack-of-fit test gives statistically significant results for various models, 
the conclusion can be only a comparison: one model is worse than the others [although 
often stated positively in terms of one model ‘better fits’ than the others; see, for 
example, O’Boyle and Aguinis, (2012), pp.94, 101]. 

6 Concluding remarks 

Gaussian statistics has dominated management scholars’ thinking and shaped their views 
on notions of typical, outlier, rare and extreme. Often these terms are used 
interchangeably. Yet they can be distinguished in terms of probability distributions 
beyond the traditional Gaussian (normal) distribution. In this paper, we illustrate the 
distinctions using data on three management research examples, as well as using 
distributional graphs and simulated data. 

In a management example on organisational size and CEO compensation variables 
for top-paid CEOs of large US companies, we illustrate that the common practice of log 
transformation can 

a resolve some problems of data points which look like outliers as raw data 

b uncover an outlier in the transformed data which wasn’t apparent in raw data. 

This example underscores the importance of moving beyond the Gaussian model and 
methods for analyses of organisational size and CEO compensation variables. All four 
variables that we considered (Sales, Assets, Salary and Bonus, and Additional 
Compensation) have non-Gaussian highly skewed distributions. In particular, we find that 
a heavy-tail distribution is needed as a model for the additional compensation component 
of CEO pay in order to capture variation that includes outcomes such as Apple’s CEO 
additional compensation ($646.6 million in 2006) far distant from the mass of data. The 
Gaussian methods and measures are not applicable for making inferences about the 
additional compensation of top-paid CEOs. A heavy-tail model such as log-logistic 
(Pareto) enables such inferences with the retention of the most highly paid CEO rather 
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than to delete it as being an outlier. More generally stated, when a researcher wants to use 
Gaussian statistical methods, the researcher should first examine whether a Gaussian 
model does or does not fit the data. When a Gaussian model does not fit the data, a 
researcher ought not to arbitrarily assume that some bits of the data are outliers and then 
use this untested assumption to eliminate the troublesome bits from the sample in order 
arbitrarily to force the Gaussian model to fit the truncated data. Instead, other viable 
options exist: a researcher could consider using non-parametric and robust methods of 
inference or could examine the fits of other models even though going beyond Gaussian 
methods would likely necessitate using inferential methods which might be more 
complicated. 

In a recent paper (Nystrom et al., 2010), we propose that a data point can plausibly be 
inferred as an extreme when it falls within a high probability interval under the 
distribution of one of the sample extrema, whether the minimum or maximum. This 
method for identifying extremes is described and illustrated by another of our 
management examples, in which we analyse executives’ economic forecast accuracy 
after the 9/11 jolt. We identify plausible extreme accurate forecasts and extreme 
inaccurate forecasts, and then examine the relationship between forecast accuracy and 
company strategy. Using a Bayesian analysis, we find that the evidence (odds) is 
‘substantial’ in favour of a higher probability for an extreme accurate forecast by an 
executive in a company with a proactive strategy as compared with an executive in a 
company with a reactive strategy. We also find that the evidence (odds) is ‘strong’ in 
favour of a lower probability for an extreme inaccurate forecast by an executive in a 
company with a proactive strategy as compared with an executive in a company with a 
reactive strategy. 

Our forecast inaccuracy data included inferred extreme points, but did not include any 
point far distant from the mass of points. Further differentiation between inferred 
extremes and rare outcomes are illustrated by using samples simulated from two 
probability models: exponential and Pareto. For each model, plots of two samples are 
displayed: one with and a second without data points that are inferred as being extreme. 
Erroneous inference about a sample maximum or minimum not being extreme occurs at a 
small error rate specified by the researcher. Moreover, we show instances where an 
inferred extreme is not a rare outcome and other instances where a rare outcome cannot 
be inferred as an extreme. 

This paper also extends our method for identifying extremes by examining 
percentiles, such as the top 10%. We present an application of the high-probability 
thresholds for identifying technological implementation outcomes in UD and LD and UQ 
and LQ for a sample of 16 organisations. 

Visualisation of model fit through Q-Q plot and distributional testing are illustrated 
using the data on CEO salary and bonus. The Anderson-Darling, Kolmogrov-Smirnov 
and Wilks-Shapiro tests, unlike the chi-square goodness-of-fit test, use individual data 
points and do not require a large number of observations. The aforementioned four tests 
of model fit all confirm our results. 

Finally, Appendix 1 compares several probability models in contrast with the 
Gaussian model by using plots of their density curves and their survival functions. Plot of 
density curve, which gives probability in terms of the area, provides useful visualisation 
of some features such as the shape and spread of the distribution and intervals of high and 
low probabilities. Plot of the survival function, where the vertical axis gives the 
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probability of an outcome occurring beyond a given point, provides useful visualisation 
for the tail probabilities. 

Acknowledgements 

We began this line of research in collaboration with Masoud Yasai-Ardekani in response 
to the Call for the Fourteenth Organisation Science Winter Conference (OSWC-XIV) 
2008 ‘On the Organisation Science of Extreme Events’. The main points of this paper 
were presented at the plenary panel entitled ‘Methods: How Better to Study Extremes’. 
We thank the conference participants whose questions and comments were most 
persuasive for us to pursue these topics. We acknowledge Bill McKelvey with thanks for 
the opportunity that he provided us to present at OSWC-XIV, for his invitation to 
participate in this special issue, and for his comments and suggestions on the first draft  
of this paper which led us to improve the exposition. We are indebted to Masoud  
Yasai-Ardekani for his contributions at various stages of this research. Ehsan Soofi’s 
research was partially supported by a Sheldon B. Lubar School Dean’s Research 
Fellowship. 

References 
Andriani, P. and McKelvey, B. (2007) ‘Beyond Gaussian averages: redirecting international 

business and management research toward extreme events and power laws’, Journal of 
International Business Studies, Vol. 38, No. 7, pp.1212–1230. 

Baum, J.A.C. and McKelvey, B. (2006) ‘Analysis of extremes in management studies’, in Ketchen, 
D.J. and Bergh, D.D. (Eds.): Research Methodology in Strategy and Management, Vol. 3, 
pp.123–196, Elsevier JAI, Oxford. 

Bebchuk, L.A. and Fried, J.M. (2004) Pay Without Performance: The Unfulfilled Promise of 
Executive Compensation, Harvard University Press, Cambridge, MA. 

Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004) Statistics of Extremes: Theory and 
Applications, Wiley, West Sussex, UK. 

Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values, Springer, New York. 
DeGroot, M.H. and Schervish, M.J. (2002) Probability and Statistics, 3rd ed., Addison-Wesley, 

Reading, MA. 
Dittmann, I. and Maug, E. (2007) ‘Lower salaries and no options? On the optimal structure of 

executive pay’, Journal of Finance, Vol. 62, No. 1, pp.303–343. 
Dow, J. and Raposo, C.C. (2005) ‘CEO compensation, change, and corporate strategy’, Journal of 

Finance, Vol. 60, No. 6, pp.2701–2727. 
Edmondson, A.C., Bohmer, R.M. and Pisano, G.P. (2001) ‘Disrupted routines: team learning  

and new technology implementation in hospitals’, Administrative Science Quarterly, Vol. 46, 
No. 4, pp.685–716. 

Garg, V.K., Walters, B.A. and Priem, R.L. (2003) ‘Chief executive scanning emphases, 
environmental dynamism, and manufacturing firm performance’, Strategic Management 
Journal, Vol. 24, No. 8, pp.725–744. 

Hahn, B.J. and Doh, J.P. (2006) ‘Using Bayesian methods in strategy research: an extension of 
Hansen et al.’, Strategic Management Journal, Vol. 27, No. 8, pp.783–798. 

Hansen, M.H., Perry, L.T. and Reese, C.S. (2004) ‘A Bayesian operationalization of the  
resource-based view’, Strategic Management Journal, Vol. 25, No. 13, pp.1279–1295. 



   

 

   

   
 

   

   

 

   

   30 P.C. Nystrom and E.S. Soofi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Harris, J. and Bromiley, P. (2007) ‘Incentives to cheat: the influence of executive compensation 
and firm performance on financial misrepresentation’, Organization Science, Vol. 18, No. 3,  
pp.350–367. 

Harris, S.E. and Katz, J.L. (1991) ‘Organizational performance and information technology 
investment intensity in the insurance industry’, Organization Science, Vol. 2, No. 3,  
pp.263–295. 

Jensen, M.C., Murphy, K.J. and Wruck, E.G. (2004) ‘Remuneration: where we’ve been, how we 
got to here, what are the problems, and how to fix them’, Harvard NOM Working Paper No. 
04-28, available at http://ssrn.com/abstract=561305 (accessed on 20 January 2011). 

Kass, R.E. and Raftery, A.E. (1995) ‘Bayes factors’, Journal of the American Statistical 
Association, Vol. 90, No. 430, pp.773–795. 

Kiesler, S. and Sproull, L. (1982) ‘Managerial response to changing environments: perspectives  
on problem sensing from social cognition’, Administrative Science Quarterly, Vol. 27, No. 4, 
pp.548–570. 

Lampel, J., Shamsie, J. and Shapira, Z. (2009) ‘Experiencing the improbable: rare events and 
organizational learning’, Organization Science, Vol. 20, No. 5, pp.835–845. 

Lee, P.M. (1997) Bayesian Statistics: An Introduction, 2nd ed., Wiley, New York. 
Lie, E. (2005) ‘On the timing of CEO stock option awards’, Management Science, Vol. 51, No. 5,  

pp.802–812. 
McKelvey, B. and Andriani, P. (2005) ‘Why Gaussian statistics are mostly wrong for strategic 

organization’, Strategic Organization, Vol. 3, No. 2, pp.219–228. 
Meyer, A.D. (1982) ‘Adapting to environmental jolts’, Administrative Science Quarterly, Vol. 27, 

No. 4, pp.515–537. 
Meyer, A.D., Brooks, G.R. and Goes, J.B. (1990) ‘Environmental jolts and industry revolutions: 

organizational responses to discontinuous change’, Strategic Management Journal, Special 
issue, Summer, Vol. 11, pp.93–110. 

Miles, R.E. and Snow, C.C. (1978) Organizational Strategy, Structure, and Process, McGraw-Hill, 
New York. 

Nystrom, P.C., Soofi, E.S. and Yasai-Ardekani, M. (2010) ‘Identifying and analyzing extremes: 
illustrated by CEOs’ pay and performance’, Organizational Research Methods, Vol. 13, No. 4, 
pp.782–805. 

O’Boyle, Jr., E. and Aguinis, H. (2012) ‘The best and the rest: revisiting the normality of individual 
performance’, Personnel Psychology, Vol. 65, No. 1, pp.79–119. 

Resnick, S.I. (2007) Heavy-tail Phenomena: Probabilistic and Statistical Modeling, Springer-
Verlag, New York. 

Schwab, A., Abrahamson, E., Fidler, F. and Starbuck, W.H. (2011) ‘Researchers should make 
thoughtful assessments instead of null-hypothesis significance tests’, Organization Science, 
Vol. 22, No. 4, pp.1105–1120. 

Schwertman, N.C. and de Silva, R. (2007) ‘Identifying outliers with sequential fences’, 
Computational Statistics and Data Analysis, Vol. 51, No. 8, pp.3800–3810. 

Siegel, P.A. and Hambrick, D.C. (2005) ‘Pay disparities within top management groups: evidence 
of harmful effects on performance of high-technology firms’, Organization Science, Vol. 16, 
No. 3, pp.259–274. 

Soofi, E.S., Nystrom, P.C. and Yasai-Ardekani, M. (2009) ‘Executives’ perceived environmental 
uncertainty shortly after 9/11’, Computational Statistics and Data Analysis, Vol. 53, No. 9,  
pp.3502–3515. 

Starbuck, W.H. (2009) ‘Perspective: cognitive reactions to rare events: perceptions, uncertainty, 
and learning’, Organization Science, Vol. 20, No. 5, pp.925–937. 

Stephens, M.A. (1974) ‘EDF statistics for goodness-of-fit and some comparisons’, Journal of the 
American Statistical Association, Vol. 69, No. 347, pp.730–737. 



   

 

   

   
 

   

   

 

   

    Rare, outlier and extreme 31    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Stephens, M.A. (1979) ‘Tests of fit for the logistic distribution based on the empirical distribution 
function’, Biometrka, Vol. 66, No. 3, pp.591–595. 

Tosi, H.L., Werner, S., Katz, J.P. and Gomez-Mejia, L.R. (2000) ‘How much does performance 
matter? A meta-analysis of CEO pay studies’, Journal of Management, Vol. 26, No. 2, 
pp.301–339. 

Wade, J.B., O’Reilly, C.A. and Pollock, T.G. (2006) ‘Overpaid CEOs and underpaid managers: 
fairness and executive compensation’, Organization Science, Vol. 17, No. 5, pp.527–544. 

Weick, K.E. (1995) Sensemaking in Organizations, Sage, Thousand Oaks, CA. 
Yasai-Ardekani, M. and Nystrom, P.C. (1996) ‘Designs for environmental scanning systems: tests 

of a contingency theory’, Management Science, Vol. 42, No. 2, pp.187–204. 
Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics, Wiley, New York 

(Reprinted in 1996 in Wiley Classic Series). 

Appendix 1 Probability distributions 

Under the standard assumption for statistical analysis, a sample of measurements  
x1, x2,…, xn are observations generated independently according to the same probability 
distribution. That is, x1,…, xn are statistical replicates of a random variable X with a 
probability distribution F(x) = Pr(Xi ≤ x). This presentation of a probability distribution in 
terms of the CDF is applicable to both discrete and continuous random variables. This 
function increases from 0 to 1, depicting accumulation of the probability. 

In the continuous case, the derivative of F(x) is called the probability density function 
denoted by the lower case letter as f(x). This is the more familiar density curve (often 
shown above z and other tables), which gives the probability of outcomes falling in an 
interval by the area under the curve. A density curve clearly shows some features of the 
distribution such as the shape and spread of the distribution, describes the relative 
likelihood for a random variable to take on a value in an interval, but a density curve does 
not provide clear comparison between distributions in terms of probability and percentile. 

Figure 8 illustrates the relationship between the normal density curve and the normal 
CDF, F(x). In Panel (a), F(x) = Pr(X < x) is the area under the curve up to and including 
the point x. The same area is given by the height of the solid curve in Panel (b), which is 
the normal CDF, F(x). A third important representation of a probability distribution is the 
survival function defined as 

( ) Pr( ) 1 ( ).S x X x F x= > = −  

The survival function gives the areas under the density curve for an outcome exceeding 
beyond a point x. In Panel (a) of Figure 8, S(x) = Pr(X > x) is the area under the curve to 
the right of point x. The same area is given by the height of the dashed curve in Panel (b), 
which is the normal survival function, S(x). When a probability distribution represents a 
model for a population variable, the height of S(x) gives the percentage of elements in the 
population greater than the value of x. Since F(x) increases from 0 to 1, S(x) decreases 
from 1 to 0. 
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Figure 8 Three representations of a probability distribution, (a) probability density function,  
(b) cumulative distribution and survival functions (see online version for colours) 
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A1.1 Some well-known families of distributions 

Table 6 gives the formulas for the survival functions of several well-known distributions. 
These distributions are available at Wikipedia; Table 6 presents them with common 
notations and some remarks that are most relevant to the content of this paper, such as 
mean and variance undefined, heavy tail, fat tail, representations, special cases, and 
transformational relationships. 

The first three distributions in Table 6 are well known symmetric distributions: 
Gaussian (normal), logistic, and Cauchy. These distributions have mound-shape density 
curves shown in Panel (a) of Figure 9. These distributions include two parameters (θ, λ), 
referred to as the location and scale parameters respectively. For these three distributions, 
the location parameter is the centre (median) of the density curve as well as the mode, 
where nearby outcomes occur with relatively higher probability than distant outcomes. 
The scale parameter determines the spread of distribution. When θ = 0 and λ = 1, the 
distribution is said to be in the standard form (standardised). We consciously have 
avoided the traditional measures, the mean and SD, because these measures are not 
defined for all distributions, as noted in the last column of Table 6. The density curves in 
Panel (a) of Figure 9 are for the standard Gaussian and Cauchy distributions and the 
logistic distribution with the scale parameter as λ = 0.57. (The variances of the normal 
and logistic distributions in Figure 9 are nearly equal and their scale parameters are the 
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same as those for the log-normal and log-logistic models for the additional compensation 
reported in Table 2). Note that at the tail, the area under the Cauchy density curve is 
relatively higher than the other two distributions. 
Table 6 Examples of probability distributions 

Model (parameters) Survival function  
S(x) = Pr(Outcome > x) Remarks 

Symmetric distributions   
Normal (θ, λ) S(x) = 1 – entries in the normal z 

table, , 0x θz λ
λ
−

= >  

Mean = Median = Mode = θ  
Variance = λ2 

Cauchy (θ, λ) 1 1( ) tan
2

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

x θS x
π λ

 
Median = Mode = θ 
Interquartile range = 2λ  
Fat tail, mean and variance 
undefined 

Logistic (θ, λ) 
( ) , 0

1

x θ
λ

x θ
λ

eS x λ
e

−
−

−
−

= >
+

 
Mean = Median = Mode = θ 

Variance = 
2

2

3
π λ  

Skewed distributions   
Log-normal (θ, λ) S(x) = 1 – entries in the normal z 

table, log , 0, 0x θz x λ
λ
−

= ≥ >  

Shape determined  
by both parameters 
Heavy tail 
y = log x Normal 

Log-Cauchy (θ, λ) 
11 log 1( ) tan , 0

2
− −⎛ ⎞= − ≥⎜ ⎟
⎝ ⎠

x θS x x
π λ

 

   λ > 0 

Mean and variance undefined  
Shape determined by both 
parameters 
Supper-heavy tail 
y = log x Cauchy 

Log-logistic (θ, λ) 
Pareto III representation: 

1 log 1,
xa λx θ a

λ
= =  

log

log( ) , 0, 0
1

x θ
λ

x θ
λ

eS x x λ
e

−
−

−
−

= ≥ >
+

 
Mean undefined when λ > 1 
Fat tail when λ > 2, variance 
undefined 
y = log x Logistic 

Exponential (θ, λ) 
( ) , , 0

x θ
λS x e x θ λ
−

−
= ≥ >  

Mean = λ, Median = λ log2, 
Mode = 0; Variance = λ2 

Weibull (θ, λ, α) 
Special case: 
Exponential, α = 1 

( ) , , 0
αx θ

λS x e x θ λ
−⎛ ⎞−⎜ ⎟

⎝ ⎠= ≥ >  
α, shape parameter; λ, Scale 
parameter 
Heavy tail when α < 1 
y = xα exponential 

Pareto II (θ, λ, α) 
Special case: 
Pareto I, θ = λ 

1( ) , , , 0
1

αS x x θ α λ
x θ
λ

= ≥ >
−⎛ ⎞+⎜ ⎟

⎝ ⎠

Mean undefined when α < 1 
Fat tail when α < 2, variance 
undefined 

Pareto III (θ, λ, α) 1( ) , , , 0
1

αS x x θ α λ
x θ
λ

= ≥ >
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 α, shape parameter 
Mean undefined when α < 1 
Fat tail when α < 2, variance 
undefined 



   

 

   

   
 

   

   

 

   

   34 P.C. Nystrom and E.S. Soofi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 includes several other distributions, all of which have skewed density curves. 
These models are used in various fields for distributions of variables with non-negative 
outcomes such as income, sales, and duration. The log-transformed distributions usually 
start at x = 0, but can also include a shift parameter that sets the point where the area 
under the density curve begins. For these log-transformed distributions, the two 
parameters (θ, λ) are the location θ and scale λ of the distributions of the natural log of the 
variable; for example, for log-normal, θ is the mean and λ is the SD of the corresponding 
normal model for the natural log of the variable. For other distributions, θ > 0 is the 
threshold parameter and F(x) = 0 for x < θ (the distribution starts at x = θ), and λ > 0 is 
the scale parameter. The Weibull distribution includes a third parameter α that appears as 
exponent and determines the shape of its density curve. When α =1, the distribution is 
exponential. When α > 1, the density curve has a mode and when α < 1, the density curve 
shoots up along an asymptote at zero. Pareto II and Pareto III distributions also include a 
third parameter α that appears as exponent. Pareto I is a special case of Pareto II when  
θ = λ. The third parameter α of the Pareto III distribution determines the shape of its 
density curve similar to the Weibull, but for the case of α = 1 Pareto II and Pareto III are 
identical distributions. (Two other Pareto distributions, known as Pareto IV and 
generalised Pareto, are not discussed in this paper, hence not shown in Table 6). 

Figure 9 Probability density functions of symmetric and skewed distributions, (a) symmetric 
density curves, (b) skewed density curves (see online version for colours) 
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Panel (b) of Figure 9 shows density curves of four of these skewed distributions: 
Exponential, Pareto II, Pareto III, and log-normal distributions. Here, the parameters are 
set such that the median=1 for all distributions. For all values of its parameters, the shape 
of Pareto II density curve is the same as shown in here. Since the exponent parameter of 
the Pareto III is α = 1.75 > 1, its density curve has a mode. 

As noted in Table 6, the mean for these distributions is undefined when the exponent 
parameter is less than or equal to 1 and the variance is undefined when it is less than or 
equal to 2. As mentioned in Section 2.2, Pareto III and log-logistic distributions are two 
representations of the same distribution. This is because of the following distributional 
relationship between two random variables: if the distribution of a variable X is Type III 
Pareto, then the distribution of its log transformation Y = log X is logistic, which is the 
same relationship between the log-logistic and logistic distributions, and is analogous to 
the relationship between the log-normal and normal distributions. Panel (b) of Figure 9 
also includes a log-normal density curve. As can be seen, the log-normal (0, 1) and Pareto 
III (0, 1, 1.75) are similar. 

A1.2 Heavy-tail and mixture distributions 

The class of heavy-tail distributions is defined in terms of a decaying property of S(x); the 
fat-tail and long-tail distributions are sub-classes. The tails of heavy-tail distribution 
decay very slowly which make them capable of generating some data points far from the 
mass of the data. The Cauchy distribution is an example of symmetric heavy-tail 
distribution. The Cauchy distribution is a special case of the t family (t with degree of 
freedom = 1), all of which are heavy tail. 

Figure 10 shows the survival functions S(x) for x > 2, which depict the tail 
probabilities of the distributions in a more direct form. The vertical axis (height of a 
curve) in Figure 10 gives the tail probability (area under the respective density curve in 
Figure 9). The Half-normal and Half-Cauchy are the right halves of the respective 
distributions, normalised for the area under the curve to be one (these distributions are 
also used for duration variables such as lifetime). This figure also shows the survival 
function of the Log-Cauchy distribution, which is sometimes called super-heavy-tail 
distribution. As seen, Gaussian (normal) tail decays very quickly, followed by the 
exponential tail. (The logistic tail, not shown here, decays slower than the normal tail but 
faster than the exponential tail). Among the heavy-tail distributions in Figure 10, the  
log-normal’s tail probabilities stand visible till about 15 (the Pareto III tail, not shown 
here, decays similarly), and the tails of the Log-Cauchy, Pareto I and Half-Cauchy 
continue well beyond, remaining visible at 100. Thus, unlike the normal distribution 
under which an outcome more than 4 is almost impossible, some heavy-tail distributions 
can produce outcomes tens and hundreds of units away from the median. Figure 10 
shows that a data point of larger than 100 is a rare outcome, and yet it can be a legitimate 
outcome of the standard Cauchy, Log-Cauchy, or Pareto distributions, whereas for the 
standard normal distribution, having an outcome of larger than 5 can safely be judged as 
impossible. Thus, a researcher who simply assumes that a data set is distributed normally 
would conclude that a data point beyond a few SDs is an outlier and might decide to 
delete it from further analyses. But suppose that a test of that data set shows that a  
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Cauchy actually fits the data better than a normal distribution. In that case, the correct 
interpretation of such a data point far away from the mass could be that it is a rare 
outcome and not an outlier. 

Figure 10 Probability of an outcome greater than a value of x for six distributions [Survival 
function S(x), x>2] (see online version for colours) 
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The probability model for data containing outliers is usually a mixture, meaning that it is 
a weighted average of two or more distributions. Mixtures are encountered in statistical 
problems that involve measurements for more than one group (two-sample problems, 
Analysis of Variance (ANOVA), clustering, to name a few). For example, the standard 
ANOVA assumption is that the distribution of measurements for each group is normal, 
the variances of distributions of different groups are the same, but their means can be 
different. Panel (a) of Figure 11 depicts three density plots for an ANOVA problem with 
three groups. When the ANOVA test rejects the equality of the means, then the 
distribution of all measurements for the three groups is a Gaussian mixture with three 
components. If the sizes of three groups in the population are equal, the population of 
measurements has a mixture distribution whose density curve is depicted in Panel (b) of 
Figure 11. In the case of outliers, the weights of one group is drastically different from 
the weights of others: the weight of one of the distributions in the mixture (the underlying 
distribution of the mass of outcomes) is very high relative to the others. (Think of the 
distribution of heights of buildings in a metropolitan area; mass of one and two story 
houses, a smaller proportion of several-story buildings, and a very small proportion of 
skyscrapers.) Panel (c) of Figure 11 depicts such a mixture. Panel (b) of Figure 11 depicts 
a mixture that generates outliers at either side of the mass. In general, the distributions in 
the mixture can take any form; none of them must be a normal distribution. The 
underlying distribution of data containing an outlier is sometimes referred to as a 
contaminated distribution [DeGroot and Schervish, (2002), pp.576–577]. 
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Figure 11 Density functions of three normal distributions and various mixtures with three 
Gaussian components, (a) three normal distributions, (b) to (d) various mixtures of  
three normal distributions (see online version for colours) 
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Some heavy-tail distributions can be derived as continuous mixtures of infinitely many 
distributions. For example, Cauchy (in fact any t) distribution can be obtained as a 
continuous mixture of the normal distributions with varying variances (scale parameters); 
Type II Pareto distribution can be obtained as a continuous mixture of the exponential 
distributions with varying scale parameter; Type III Pareto distribution can be obtained as 
a continuous mixture of the Weibull distributions with varying scale parameter. (A 
continuous mixture is found by giving weight to each value of a parameter according to a 
probability density function). This derivation can provide a plausible explanation for the 
common feature of rare and outlier as being outcomes substantially distant from the mass 
of the data. Yet it is conceivable that a single heavy-tail model may fit the mass of the 
data points, but not all. In such case, one can draw a distinction between a rare outcome 
of a heavy-tail model and an outlier relative to that model which is generated from a 
different model; hence, capturing the entire set of data points would require a mixture. 

Bivariate and multivariate versions of all univariate models discussed above are also 
available. For the heavy-tail distributions (Cauchy, Pareto), the correlation coefficient is 
not defined. However, Kendall’s tau and Spearman rank measures are applicable to 
measure association between variables for all distributions. By their invariance property 
under monotone increasing transformations, each of these measures gives the same 
strength of association for bivariate log-normal as for bivariate normal. Each measure 
also gives the same strength of association for bivariate log-logistic (Pareto) as bivariate 
logistic and bivariate exponential. 
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Appendix 2 Measure of forecasting inaccuracy 

For the forecast Wi of each executive i = 1,…, 93, we construct a piece-wise uniform 
distribution in the range of –3% to +4%. This range was chosen according to the 
paragraph describing the GDP rates. Figure 12 shows the forecast distributions for four 
executives. The arrows point to the actual GDP growth for the forecast period – which 
turned out to be a surprisingly health 3.4%. Most executives made unduly pessimistic 
forecasts. Many executives no doubt dreaded the prospect of the US economy sliding 
back into another recession and research has found that “people overestimate the 
likelihoods of events that they dread” [Starbuck, (2009), p.931]. The upper panels in 
Figure 12 show distributions for the most accurate forecast (left) and the least accurate 
forecast (right) from amongst the 93 executives. The lower panels in Figure 12 show 
forecast distributions for another two executives, where the one at the left is relatively 
more accurate than the one at the right. 

We measured the forecast inaccuracy of each executive using the mean squared error 
(MSE) of the executive’s forecast distribution. An executive’s forecast is scored as more 
inaccurate when her or his estimated probabilities are greater for outcomes that are 
farther away from what turns out to be the actual outcome (3.4% GDP growth in this 
case). The MSE of the forecast Wi for each executive is computed using the following 
relationship: 

( ) ( ) ( ) ( ) 22MSE 3.4 Var Mean 3.4i i i iW E W W W⎡ ⎤= − = + ⎡ − ⎤⎣ ⎦⎣ ⎦  

Figure 12 Economic forecast distributions for four respondents in the 9/11 study (see online 
version for colours) 
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Our results are robust; we obtained similar results when we tried some other procedures 
for constructing the forecast distribution and other loss functions such as the mean 
absolute error. 


