Rare, outlier and extreme: beyond the Gaussian model and measures Online publication date: Wed, 27-Aug-2014
by Paul C. Nystrom; Ehsan S. Soofi
International Journal of Complexity in Leadership and Management (IJCLM), Vol. 2, No. 1/2, 2012
Abstract: Probability models for rare, outlier and extreme outcomes are different than the Gaussian (normal) distribution commonly used in management research. This paper illustrates the theoretical basis and implementation of these concepts. One example uses data on organisational size and compensation of CEOs in large US corporations in order to illustrate rare and outlier outcomes. Models that fit the data on these variables are very different than the Gaussian distribution, so mean, standard deviation and correlation are useless here. Another example uses data collected from business executives' economic forecasts shortly after the 9/11 terrorist attacks to illustrate how to identify extreme outcomes and a Bayesian approach for inferring relationship between extreme outcomes and strategy type. Differentiations between extremes and rares are illustrated using data simulated by a Monte Carlo method. Visualisation of fit of a model for data by Q-Q plot and discussion of distributional testing precedes some concluding remarks.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Complexity in Leadership and Management (IJCLM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com