Development of an experimental model of the carotid bifurcation using electrically conductive silicone: an introduction to the incorporation of baroreceptor function within a mimetic model of the carotid artery
by John J. Mulvihill; Eoghan M. Cunnane; Barry M. O'Connell; Michael T. Walsh
International Journal of Nano and Biomaterials (IJNBM), Vol. 4, No. 2, 2012

Abstract: This study assesses the suitability of developing a material for use in an experimental model of the carotid baroreceptors. Such a model could then be used in future studies to assess the impact of carotid artery stenting on hemodynamic stability. The material must exhibit a significant measurable electrical response to strain in a fashion analogous to baroreceptor behaviour. A modified electrically conductive silicone (ECS) was examined for use as the material, which was generated from a combination of Wacker LR 3162 and silicone thinner. Samples of the ECS were subjected to uniaxial tensile testing and electrical stimulation in order to mechanically and electrically characterise the material. Testing revealed that the ECS exhibits mechanical behaviour comparable to published data on carotid arterial tissue up to 20% strain and a measurable electrical response to strain in a fashion qualitatively comparable to baroreceptor behaviour. These findings highlight the potential of this material for employment as an experimental model of the carotid baroreceptors.

Online publication date: Tue, 30-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nano and Biomaterials (IJNBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com