Adhesion and survival of electrogenic cells on gold nanopillar array electrodes
by Dorothea Brüggemann; Kristin E. Michael; Bernhard Wolfrum; Andreas Offenhäusser
International Journal of Nano and Biomaterials (IJNBM), Vol. 4, No. 2, 2012

Abstract: Cell-electrode interfaces play a critical role in extracellular recording. Enlarging the electrode surface area with nanostructures yields higher signal-to-noise-ratios due to lower interface impedance. Adhesion and viability of various cell types on large-scale gold nanopillar electrodes to improve cell-electrode coupling were investigated. Cardiac muscle and human embryonic kidney cells survived and adhered well on gold nanopillars. The muscle cells even protruded into inter-pillar cavities with diameters below 100 nm. However, an unexpectedly low viability and adhesion of primary rat neurons was observed on nanopillars. A cross-sectional analysis of the cell-nanopillar interface showed large distances between neuronal cell bodies and nanopillars, whereas the neurites adhered tightly. Furthermore, actin assembly within the neuronal growth cones was modified on nanopillars. In summary, the adhesion response of the investigated cell lines will be beneficial for improved extracellular signalling, whereas a better understanding of neuronal responses to nanotopographies is required to enhance the neuronal viability.

Online publication date: Tue, 30-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nano and Biomaterials (IJNBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com