The effect of N-doping on the electronic structure of graphene nanoribbon
by Xifu Song; Liqiang Zhang; Xingang Yu; Tao Xi; Yanfang Zhao; Jian Liu; Xialong Li; Fangwei Xie; Ping Yang
International Journal of Materials and Structural Integrity (IJMSI), Vol. 6, No. 2/3/4, 2012

Abstract: To analyse the effect on electronic structure of nitrogen-doped graphene nanoribbons, the parameters such as the lattice, band structure, density of states of intrinsic graphene nanoribbon, N-doped graphene nanoribbons are calculated by using first-principle method. The results demonstrate that the band gap of graphene nanoribbon mainly comes from the new surface states in the edge. The N-doping in the middle of graphene nanoribbon has less influence on the band gap performance than in the edge region, which indicates the atoms in the edge do great contribution to the band gap properties. The N-doping makes the band gap narrower; the sharp changes of the band gap also show that the N-doping is a promising candidate to make the n-type graphene structures.

Online publication date: Thu, 18-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com