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Abstract: This paper studies a general retrial MX/G/1 queue with an additional 
phase of second optional service and Bernoulli vacation where breakdowns 
occur randomly at any instant while servicing the customers. If an arriving 
batch finds that the server is busy in providing either first essential service 
(FES)/second optional service (SOS) or on vacation then arriving batch enters 
an orbit called retrial queue. Otherwise, one customer from arriving batch 
starts to be served by the server while the rest join the orbit. The vacation times 
and service times of both first essential and second optional services are 
assumed to be general distributed while the retrial times are exponential 
distributed. Introducing supplementary variables and by employing embedded 
Markov chain technique, we derive some important performance measures of 
the system such as average orbit size, average queue size, mean waiting time, 
expected lengths of busy period, etc. Numerical results have been facilitated to 
illustrate the effect of different parameters on several performance measures. 
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1 Introduction 

Retrial queue is characterised by the fact that any arriving batch who finds the server 
busy has to leave the service area and enters the virtual pool of blocked customers 
considered as orbit to ask his request after some random amount of time. Such types of 
retrial queuing system has potential applications in telephone switching systems, 
computers and telecommunications networks, packet switching networks, call centres, 
etc. Moreover, in past literature, retrial queue was studied in different frame works under 
three types of policies, i.e., 

1 classical retrial policy 

2 constant retrial policy 

3 linear retrial policy. 

In classical retrial policy, the intervals between successive repeated attempts are 
exponentially distributed with rate nθ (say), when the number of the customer in retrial 
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group is n. On the other hand, the intervals between successive repeated attempts are 
exponentially distributed with retrial rate ν(1 – δn,0) and ν(1 – δn,0) + nθ for constant and 
linear retrial policy, respectively, where n is the orbit size, δi,j represents Kronecker’s 
delta function, θ is the retrial rate per customer and ν can be considered as the rate of the 
server providing service during the idle state. 

The purpose of present investigation is to analyse the M/G/1 retrial queue with an 
additional phase of second optional service (SOS) and server breakdown by incorporating 
the concepts of 

1 bulk arrival 

2 vacation 

3 choice for the server to go for a vacation in both phases of service according to 
Bernoulli vacation. 

The rest of the paper is organised as follows. The survey of the previous relevant 
literature is presented in Section 2. In Section 3, we provide the brief description of the 
mathematical model. By using embedded Markov chain technique, we obtain the limiting 
distribution of the queue size at random and departure epochs in next Section 4. Further, 
in Section 5, the joint distribution of the number of the customers of the server states in  
the retrial group and queue size distribution has been discussed. Various queuing 
performance measures have been derived in Section 6. Further, we deduce some special 
cases of the model by setting appropriate parameters with previous existing works in 
Section 7. In the next Section 8, the stochastic decomposition property is discussed. 
Numerical results have also been given in Section 9 to verify the analytical results 
established in previous sections. Finally, in Section 10, the paper comes to end with some 
concluding remarks. 

2 Survey of literature 

For an early part notable contributions on retrial queue, we refer the book by Falin and 
Templeton (1997). A few applications of retrial queue have been discussed in the survey 
paper of Kulkarni and Liang (1997). An M/G/1 queuing system with two phases of 
heterogeneous service has been examined by Atencia and Moreno (2005), Choudhury 
(2007), and Boualem et al. (2009) in different frame-works. Recently, Falin (2010a) 
studied a single server batch arrival retrial queue and applied embedded Markov chain 
technique to obtain the joint distribution for the number of the customers in the queue as 
well as for orbit. 

In most of the queuing literature, we often meet the situations wherein the server may 
breakdown; such queuing problem is termed as queue with server breakdown. The 
assumptions of perfect reliable server are unrealistic in most of the congestion scenarios 
including in the area of computer and communication networks, flexible manufacturing 
system, production system, inventory and many others. According to the queuing and 
reliability point of view, the queue theorists are interested to develop the repairable 
service station. The worth nothing contributions in this area can be seen in the works of 
Ke (2005), Atencia et al. (2008), Choudhury and Deka (2009), Falin (2010b), Jain and 
Bhargava (2010). They have obtained the joint distribution for the number of the 
customers in the queue in the retrial group. 
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Several contributions are available on M/G/1 queuing system in which the server may 
provide a second phase of optional service. Madan (2000) considered the classical M/G/1 
queuing system in which the server provides the first essential service (FES) to all the 
arriving customers whereas some of them receive SOS. The steady state analysis of an 
M/G/1 queue with repeated attempts and additional second phase of service has been 
done in different frameworks by Artelejo and Choudhury (2004), Choudhury (2008), and 
Choudhury and Tadj (2009). 

3 Model description 

Consider a single server retrial queuing system with batch arrivals. The queuing model  
is formulated by using stochastic process. The whole system works under some 
assumptions of the arrival process, service process, repair process, retrial policy, and 
vacation mechanism given below: 

a Arrival process: The primary customers arrive in batches according to Poisson 
process with rate λ. It is assumed that at every arrival epoch, a batch of k primary 
units arrives with probability ck. Furthermore, the generating function for the  
batch size distribution is 

1

( ) k
k

k

C z c z
∞

=

= ∑  

which follows that E(X) = C′(1) and E(X2) = C″(1) + c′(1). 

b Service process: The system has a single server who provides preliminary FES 
denoted by B1 to all arriving customers one by one according to first in first out 
(FIFO) discipline. As soon as the FES of a customer is completed, the server may 
provide SOS denoted by B2 with probability p to only those customers who opt for it 
otherwise leaves the system with the complementary probability (1 ).p p= −  

c Repair process: While the server is in working state, i.e., providing FES or SOS, it 
may breakdown at any time with failure rate α1 during FES and α2 during SOS. As 
soon as server breakdown occurs, it is immediately sent for repairing where repair 
time denoted by R1 for FES and R2 for SOS. After repairing, the server renders 
remaining service of the customers of both of the phases (FES or SOS) and such 
service time are cumulative and is known as generalised service times. 

d Retrial policy: If the server is busy in providing FES/SOS or under repair or on 
vacation at the arrival epoch, then all the arriving customers join the orbit. On the 
other hand, if the server is free, then one of the customer from arriving batch begins 
its service and the others join a retrial group to seek its service again and again  
under linear retrial policy, classical retrial policy, constant retrial policy, with rate  
θn = ν(1 – δn,0) + nθ, θn = nθ, θn = ν(1 – δn,0), respectively, till he finds the server 
free. 

e Vacation mechanism: After each service completion epochs, the server either takes a 
vacation of random length given by V1 (V2) with probability σ1 (σ2) during FES 
(SOS) or may decide to serve new customer with the complementary probability 
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1 2( ).σ σ  Further, we assume that the vacation time is iid random variable which is 
independent of the input process. 

In Table 1, we define some notations used for probability distribution functions (PDF), 
and their Laplace Steiljes transforms (LST) and kth (k ≥ 1) moments. 
Table 1 Notations for distribution functions 

Time PDF LST kth moments 

FES B1(t) *
1 ( )b s  ( )

1
kb  

SOS B2(t) *
2 ( )b s  ( )

2
kb  

Repair during FES R1(t) *
1 ( )r s  ( )

1
kr  

Repair during SOS R2(t) *
2 ( )r s  ( )

2
kr  

Vacation during FES V1(t) *
1 ( )sν  ( )

1
kν  

Vacation during SOS V2(t) *
2 ( )sν  ( )

2
kν  

ith (i = 1,2) phase generalised service time Gi(t) *
1 ( )G s  ( )

1
kg  

Modified Service B(t) B*(s) b(k) 

We describe the state of the system at time t by employing stochastic process  
X(t) = {C(t), M(t), δ(t)}, where C(t) takes values 0, 1, 2, or 3 according to whether the 
server is idle, busy with first phase of generalised service time (including both service 
time and repair time during FES), busy with second phase of generalised service time 
(including both service time and repair time during SOS) or on vacation at time t. Let 
M(t) denotes the number of customers in the orbit at time t. If C(t) ∈ {1, 2}, then δ(t) 
represents the corresponding elapsed service time. 

The time required by a customer to complete a service cycle is defined as a modified 
service time B which is given by 

1 1

1 1 1

1 2 2

1 2 2 2

, with probability 
, with probability 
, with probability 

, with probability 

G p
G V p

B
G G p
G G V p

⎧
⎪ +⎪= ⎨ +⎪
⎪ + +⎩

σ
σ
σ
σ

 (1) 

4 Embedded Markov chain 

For analysis purpose, we employ the concept of modified service time which was first 
introduced by Keilson and Servi (1986) for GI/G/1 queuing system and subsequently 
used by Keilson and Servi (1987, 1989) and others for investigating M/G/1 queuing 
systems in different frameworks. Let Bn be the number of the customers arriving during 
the nth total service time. Let τn be the time instant at which nth service completion occurs. 
Let us consider the sequence Nn = N(τn+) which is embedded Markov renewal process of 
the continuous time Markov process Y(t). Then 
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( )1

1 with probability 
/

with probability 

j
n

j
n n

n
j

j B
N N j

j B
−

⎧ − +⎪ +⎪= = ⎨
⎪ +
⎪ +⎩

θ
λ θ

λ
λ θ

 (2) 

4.1 The limiting distribution 

By using the classical criteria based on mean drifts (see Artelejo and Gomez-Corral, 
1997; Sennott et al., 1983), it can be proved that the sequence 1{ }n nN ∞

=  is positive 
recurrent to guarantee that the limiting probabilities lim { }j n

n
P N jπ

→∞
= = , j ≥ 0; exist and 

are positive. Let (1) (1), ,n n nl l h  and hn be the probabilities that ‘n’ customers arrive during 
the time intervals (G1), (G1 + G2), (G1 + V1), and (G1 + G2 + V2), respectively. These 
probabilities are defined as 

(1) (1) (1) (1)
1, 1 2,

0 0 0

; , ; and .
n n n

n n n n i n n i n ii n i
i i i

l l l l l h l m h l m− −−
= = =

= = = =∑ ∑ ∑  

Also, for i = 1,2 

( ) [ ] ( )( )* * * *

0 0

( ) ( ) ( ) 1 ( )
!

i

n
nit t

i i i i i i
n

tG e e r dB t b r
n

∞∞
− −

=

⎡ ⎤
= = + −⎢ ⎥

⎣ ⎦∑∫ θ α αθ θ θ α θ  (3) 

0
,

( )

1 0

( ), if 0

( ) ( )
,  if 1

!

t
i

i n
nt n

ij

n

e dG t j

l
e t c dG t

n
n

∞
−

∞∞ −

=

⎧
⎪ =
⎪⎪= ⎨
⎪

≥⎪
⎪⎩

∫

∑∫

λ

λ λ
 (4) 

and 

0
,

( )

1 0

( ),  if n 0

( ) ( ) , if n 1
!

t
i

i n
tt n

n i

n

e dV t

m
e t c dV t

n

∞
−

∞∞ −

=

⎧
⎪ =
⎪⎪= ⎨
⎪

≥⎪
⎪⎩

∫

∑∫

λ

λ λ
 (5) 

Here ( )
0{ }t

n nc ∞
=  denotes the kth convolution of the sequence 0{ } .n nc ∞

=  

4.2 Transition matrix 

The one step transition matrix is P = (pij), where pij = Pr(Nn+1 = j / Nn = i) associated with 
Markov chain 1{ }n nN ∞

=  is obtained as 
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(1) (1)
1 10 0

2 0 2 0

1 (1) (1)
1 11 1

2 1 2 11

(1) (1)
1 11 1

2 1 2 1

, if 1,  1

, if 

j

j

j i
j i n j i n

ij n
j j i n j i nn

j j i j i

j j i j i

p l p h
i j i

p l p h

p l p h
p c

p l p h

p l p h

p l p h

− +
− + − − + −

− + − − + −=

− + − +

− + − +

⎡ ⎤+
≥ = −⎢ ⎥+ + +⎣ ⎦

⎡ ⎤+
= ⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
⎡ ⎤+

+ ⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

∑

θ σ σ
λ θ σ σ

σ σλ
λ θ σ σ

σ σθ
λ θ σ σ

0 i j

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ ≤ ≤⎪
⎩

 (6) 

Thus, using π = πP, the Kolmogorov equations associated with Markov chain is given by 
1

(1) (1)
1 1 1 1 2 1 2 1

0 1

1
(1) (1)

1 1 1 1 2 1 2 1
1

      ,  0

n n i
i

n j n i j n i j n i j n i j
ii j

n
i i

n i n i n i n i
ii

λπ
π c pσ l pσ h pσ l pσ h

λ θ

θ π
pσ l pσ h pσ l pσ h n

λ θ

− +

− + − − + − − + − − + −
= =

+

− + − + − + − +
=

⎡ ⎤= + + +⎣ ⎦+

⎡ ⎤+ + + + ≥⎣ ⎦+

∑ ∑

∑
 (7) 

4.2.1 Generating functions 

Now, we define the following generating functions: 

0 0 0

( )

0 0 0

, ,
0 0 0

,
0

,
0

( ) , ( ) , ( ) ,
( )

( ) , ( ) , ( ) ,

( ) , ( ) , ( )

( ) , 1, 2.

( ) , 0,

n
nn n

n n
jn n n

in n n
n n i n

n n n

i n n n
i n i i n i i n

n n n

n
i i n

n

n
i i n

n

zz z z L z l z

H z h z C z c z L z l z

H z h z M z m z K z k z

D z d z i

P z P z i

∞ ∞ ∞

= = =

∞ ∞ ∞

= = =

∞ ∞ ∞

= = =

∞

=

∞

=

= = =
+

= = =

= = =

= ∀ =

= ∀ =

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑

∑

ππ π ψ
λ θ

1, 2,3.

 

It is noted that 
1

0( ) ( ) ( ) ( )z z z z −′= + + −π θ ψ λ ν ψ λ νπ  (8) 

Also 
* *

1 2 1 1 1 2

( ) ( ( )), ( ) ( ( )); 1, 2
( ) ( ) ( ); ( ) ( ) ( ); ( ) ( ) ( )
i i i i iL z b A z M z v a z i

L z L z L z H z L z M z H z L z M z
= = ∀ =

= = =
 

where *( ) ( ) (1 ( ( )))i i iA z a z r a zα= + −  and ( ) (1 ( )).a z C zλ= −  
On multiplying equation (7) by appropriate powers of z and then summing it over  

n ≥ 0; and doing some algebraic manipulations, we get 
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1
0

( )( ) ( ) [( (1 ( )) ] ( )P zz z z C z z
z

−′= + − − + −⎡ ⎤⎣ ⎦π θ ψ λ λ ν ψ νλ π  (9) 

Using equations (8) and (9), we obtain 

1
0

[ ( ) ( )]( ) ( )
[ ( ) ]

λ z C z P zθzψ z ψ z ν νπ λ
P z z

−⎡ ⎤−′ + − =⎢ ⎥−⎣ ⎦
 (10) 

and 

( ) ( )( ) ( )
[ ( ) ]
a z P zz z
P z z

=
−

π ψ  (11) 

Using the normalising condition π(1) = 1, equation (11) yields 

1(1)
( )E X
ρψ

λ
−

=  (12) 

where 

[ ]1 1 1 1 2 2( ) ( ) ( ) ( ) ( )P z p L z p H z p L z p H zσ σ σ σ= + + +  

( ) ( )(1) (1) (1) (1)
1 1 2 2 1 21 2 1 21 1 ( ) ;r p r E X p p⎡ ⎤= + + + + +⎣ ⎦ρ ρ α ρ α λ σ ν σ ν  

(1)( ) , 1, 2i iE X b i= ∀ =ρ λ  

5 Joint distribution and queue size distribution 

In this section, we are interested to study the limiting behaviour of the process X(t)={C(t), 
M(t), δ(t)} as t → ∞. The stationary probabilities are given by 

( ) ( ){ }, lim ( ),  ( ) ( , ) , ( , ) {0, 1, 2, 3} .i j
t

P P C t M t i j i j Z +
→∞

= = ∈ ×  

Since the arrival stream is Poisson, it follows from Burke’s theorem (see Cooper, 1981) 
that the stationary probabilities {Pij} exist and are positive under the same conditions of 
the limiting probabilities 0{ }j j

∞
=π  of the embedded Markov chain 1{ } ;n nN ∞

=  i.e., iff ρ < 1. 

Theorem 1: The marginal generating function for the stationary queue size distribution is 
given as 

1 Linear retrial policy when ν > 0 and θ > 0, 

( )
( )

( )
( )

1
/

1 1
0 / 1

( ) ( )
( ) exp

( )

( ) ( )(1 ) exp
( ) ( )

z

z u

y C y P y dyz z
P y y y

y C y P y dyu du
E X P y y y

−

−

⎧ ⎫−⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

⎡ ⎤⎧ ⎫−− −⎪ ⎪⎛ ⎞⎢ ⎥× − ⎨ ⎬⎜ ⎟ −⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦

∫

∫ ∫

ν θ

ν θ

λψ
θ

ρ νπ λ
λ λθ θ

 (13a) 

and 
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11 1
/ 1

0

0

(1 ) ( ( ) ( ))exp
( ) ( ( ) )

u

y C y P y dyu du
E X P y y y

−

−
⎡ ⎤⎧ ⎫− − −⎪ ⎪⎛ ⎞⎢ ⎥= ⎨ ⎬⎜ ⎟ −⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
∫ ∫ν θθ ρ λπ

ν θ
 (13b) 

and 

( ) ( ) ( )(1) (1) (1) (1)
1 1 2 2 1 21 2 1 2

(1)

1 1 ( ) ,

( )i i

r p r E X p a v p v

E X b

= + + + + +

=

ρ ρ α ρ α λ σ σ

ρ λ
 

2 Classical retrial policy when ν = 0 and θ > 0, 

( )
( )

1 ( ) ( )(1 )( ) exp
( ) ( )

z

y C y P y dyz
E X P y y y

⎧ ⎫−− −⎪ ⎪⎛ ⎞= ⎨ ⎬⎜ ⎟ −⎝ ⎠⎪ ⎪⎩ ⎭
∫

ρ λψ
λ θ

 (14a) 

and 

( )
( )

1

0

0

( ) ( )(1 ) exp
( ) ( )

y C y P y dy
E X P y y y

⎡ ⎤⎧ ⎫−− −⎪ ⎪⎛ ⎞⎢ ⎥= ⎨ ⎬⎜ ⎟ −⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
∫

ρ λπ
θ

 (14b) 

3 Constant retrial policy when ν > 0 and θ = 0 

( )
( )

0( )
( ) ( )

( )

νπψ z
λ z C z P z

λ ν
P z z

=
⎡ ⎤−

−⎢ ⎥−⎣ ⎦

 (15a) 

and 

0
(1 ) 1

( )E X
− ⎡ ⎤= + −⎢ ⎥⎣ ⎦

ρ λ λπ
ν ν

 (15b) 

Proof: For proof see Appendix A.I. 

Remark 1: It should be noted that the limiting probabilities 0{ }j j
∞

=π  can also be solved 
recursively using equation (7) and the expression for π0 can be determined from above 
theorem in case of linear retrial policy, classical retrial policy, and constant retrial policy, 
respectively. 

5.1 Embedded Markov renewal process 

Here, as we note that {X(t); t ≥ 0} is a Markov regenerative process with the embedded 
Markov renewal process 1{ } ,n nN ∞

=  so we may use some classical results established in 
Cinlar (1975). 
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Denote 

ψn(i, j) the expected amount of time spent by the process X(t); t ≥ 0 in the state (i, j) 
during an interval between two successive total completion epochs given that at 
the beginning of this interval, the number of customers in orbit was n 

ψn the expectation of the interval between two successive total completion epochs 
given that at the beginning of this interval, the number of customers in orbit  
was n. 

Then, we have 

0
,

0

( , )
; 0 1, 0

n n
n

i j
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i j
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=
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π ψ
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 (16) 

For this model, we observe that 

( ) ( )(1) (1) (1) (1) (1) (1)
1 2 1 21 1 2 2 1 2

1 1 1n
n

r b p r b p v p v= + + + + + +
+

ψ α α σ σ
λ θ
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and 

[ ] 1

0

( ) .n n
n

E Xψ π λ
∞

−

=

=∑  

Lemma 1: The limiting probabilities of the stationary queue size distribution are as 
follows 
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where 
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Proof: For proof, see Appendix A. II. 

Theorem 2: The partial generating functions for the idle, busy with first phase of 
modified service, busy with second phase of modified service and vacation states of the 
server, respectively are obtained as 

0 ( ) ( ) ( )P z E X z= λ ψ  (22) 

( )( )*
1 1

1 0
1 ( )

( ) ( )
( ( ) )

b A z
P z P z
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−

 (23) 
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 (24) 
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( ) ( )
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* *
1 1 1 1

* * *
2 1 1 2 2 2

3 0

( ) 1 ( ( ))
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⎡ −⎡ ⎤⎣ ⎦⎣
⎤+ −⎡ ⎤⎣ ⎦⎦=

−

σ

σ
 (25) 

Proof: For proof see Appendix A.III. 

Theorem 3: The probability generating function (PGF) of the number of customers in the 
orbit is given by 

[ ]
0(1 ) ( )( )

( )
z P zR z

P z z
−

=
−

 (26) 

Proof: For proof see Appendix A.IV. 

Theorem 4: The stationary distribution of the total number of customers in the system is 
given by 

[ ]
0(1 ) ( ) ( )( )

( )
z P z P zQ z
P z z

−
=

−
 (27) 

Proof: For proof see Appendix A.V. 

6 Performance measures 

We derive some performance measures in terms of steady state probabilities in order to 
investigate the behaviour of unreliable MX/G/1 retrial queuing system. The probabilities 
of the server being in different states, mean orbit length, mean system length, mean 
waiting time of the customer and mean busy period are obtained as follows: 

a States of the server: The long run probabilities of the server being in different states 
are obtained as follows: 
• The long run probability of the server being idle is obtained as 

0
1

( ) lim ( ) (1 )
z

P I P z
→

= = − ρ  (28) 

• The long run probability of the server being on first phase of generalised service 
is 

( )(1) (1)
1 11 11

( ) lim ( ) ( ) 1
z

P FG P z E X b r
→

= = +λ α  (29) 

• The long run probability of the server being on second phase of generalised 
service is 

( )(1) (1)
2 22 21

( ) lim ( ) ( ) 1
z

P SG P z p E X b r
→

= = +λ α  (30) 
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• The long run probability of the server being on vacation is 

( )(1) (1)
3 1 21 21

( ) lim ( ) ( )
z

P V P z E X p p
→

= = +λ σ ν σ ν  (31) 

b Queue length: The average queue lengths of the customers in the orbit as well as in 
the system are obtained as follows: 
1 The expected number of customers in the orbit is given by 

( )

( )
1

2

 ( )

(1) (1)
( ) (1 ) 2(1 )

O
z

dE N R z
dz

E X P
E X

=

=

′ ′′
= + +

− −
ψ

ρ ρ

 (32) 

• If ν > 0 and θ > 0, then 

( )1
0(1) [ ] ( ) 1 ( ( ) 1)E X E X−′ ⎡ ⎤= + − + + −⎣ ⎦ψ θ ν π ρ λ ρ  (33) 

• If ν = 0 and θ > 0, then 

1(1) [ ] ( ( ) 1)E Xψ λ θ ρ−′ = + −  (34) 

• If ν > 0 and θ = 0, then 

( )( )
[ ]

2

1

(1 ) 2 ( ) (1) ( )
(1)

2(1 ) ( ( ) 1)(1 )
E X E X P E X

E X −

⎡ ⎤′′− + +⎣ ⎦′ =
− − + − −

λ ρ ρ
ψ

ρ ν λ ρ ρ
 (35) 

where 

1 1 1 1 2 2(1) (1) (1) (1) (1)P p L p H p L p Hσ σ σ σ′′ ′′ ′′ ′′ ′′= + + +  

1 1 2 2 2 2(1) (1) 2 (1) (1) (1), (1) (1) 2 (1) (1) (1)L L L L L H L M L M′′ ′′ ′ ′ ′′ ′′ ′′ ′ ′ ′′= + + = + +  

( ) ( )(1) (1)
1 1 2 21 2(1) 1 1L r r′ = + + +ρ α ρ α  

(2) (1) (2) (1)2 2(1) ( (1)) (1) , (1) ( (1)) (1) 1, 2i i i ii i i iL A b A b M a a iν ν′′ ′ ′′ ′′ ′ ′′= − = − ∀ =  

( ) ( )(1) (1) (1)(1) 1 , ( ) ( ) , (1) ( ) 1
1, 2

i i i i i ii i iL r M z E X A E X r
i
′ ′ ′= + = = − +

∀ =

ρ α λ ν λ α  

( ) ( )(2) (1)2 2 2 2(1) ( ) , 1, 2i i i iA E X E X r E X r i⎡ ⎤′′ = − − + ∀ =⎣ ⎦λ α λ λ  

( )2(1) ( ), (1)a E X a E Xλ λ′ ′′= − = −  
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2 The expected number of the customers in the system is given by 

( ) ( )
1

( )S O
z

dE N Q z E N
dz

ρ
=

= = +  (36) 

c Average waiting time: Waiting time is an important characteristic of any queuing 
system. The mean time of a customer that he spends in the system can be obtained by 
using Little’s formula, given by 

( ) ( )[ ]OS E NE NW
+

= =
ρ

λ λ
 (37) 

d Mean busy period: The mean busy period can be calculated by utilising well known 
result of alternating renewal process, given as (cf. Choudhury and Deka, 2009) 

( ) ( )1
0 1

bE T
− −

=
π

λ
 (38) 

where the value of π0 can be put from theorem 1 in case of linear retrial 
policy/classical retrial policy/constant retrial policy. 

Remark 2: It is noticed that the value of ψ′(1) can be easily computed by using equation 
(10) in case of linear retrial policy, classical retrial policy, constant retrial policy, given in 
equations (33), (34), (35), respectively. 

7 Special cases 

By assigning appropriate parameter values, we can deduce some special cases of the 
models in order to verify our results with the existing results. 

Case 1: unreliable M/G/1 retrial queuing system with FES and SOS 

In this case, we set E(X) = 1, E(X2) = 0 and σ1, σ2 = 0, so that equation (32) becomes 

( ) ( )[ ]0 1 (1)
(1 ) 2(1 )

O
P

E N
+ + − ″

= +
− −

λρ ν π ρ
θ ρ ρ

 (39) 

where 

( ){ } ( ){ }
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2 2(2) (1) (1) (2) (1) (2)
1 1 1 2 2 21 1 2 2
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1 2 1 21 2
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2 1 1

R RP r r b p r r b

r r

⎡′′ = + + + + +⎣

+ + +

λ ρ α α ρ α α

ρ ρ α α
 

and 

( ) ( )
(2)

( ) (1) (1)
1 1 2 21 2(1) , 1 1 .

2
i i

R
i

bb r p r
b

= = + + +ρ ρ α ρ α  

The above results coincide with those obtained by Choudhury and Deka (2009). 
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Case 2: M/G/1 retrial queue under Bernoulli vacation along with two phases of 
essential service 

On setting E(X) = 1, E(X2) = 0, αi = 0, (1) (2), 0,i ir r =  ∀i = 1, 2, p = 1 and σ1 = 0, then 
equation (32) reduces to 

( ) ( )[ ]0 1 (1)
(1 ) 2(1 )

O
P

E N
+ + − ″

= +
− −

λρ ν π ρ

θ ρ ρ
 (40) 

where 

( ){ }(2) (2) (1) (2) (2) (2) (1) (1)2
1 2 1 2 1 1 1 2(1) 2 2P b b b b p b b⎡ ⎤′′ = + + + + +⎣ ⎦λ ν ν  

and 

( )(1) (1) (1)
21 2 2 .b b= + +ρ λ σ ν  

This case coincides with the model developed by Choudhury (2008). 

Case 3: MX/G/1 retrial queue with Bernoulli vacation schedule and two phase 
service 

In this case, setting αi = 0, (1) (2), 0,i ir r =  ∀i = 1, 2, p = 1 and σ1 = 0, equation (32) gives 

( )
( ) [ ]2 ( ) ( 1) (1)

2(1 ) ( ) (1 ) 2(1 )O
E XE X PE N

E X
+ − ′′

= + +
− − −

λ λ ρρ
ρ θ ρ ρ

 (41) 

where 

[ ] ( ){ }2 (2) (2) (1) (2) (2) (2) (1) (1)
1 2 1 2 1 1 1 2(1) ( ) 2 2P E X b b b b p b b⎡ ⎤′′ = + + + + +⎣ ⎦λ ν ν  

and 

(1) (1) (1)
21 2 2( ) .E X b b⎡ ⎤= + +⎣ ⎦ρ λ σ ν  

In particular case, if Bernoulli admission control is assumed to be zero, above result 
coincides with the results obtained by Choudhury (2007). 

Case 4: M/G/1 queue with repeated attempts with SOS along with FES and 
without vacation 

Substituting, E(X) = 1, E(X2) = 0, αi = 0, (1) (2), 0,i ir r = ∀  i = 1, 2 and σ1 = σ2 = 0 in 
equation (32), we get 

( ) (1)
(1 ) 2(1 )O

PE N
′′

= +
− −

λρ
θ ρ ρ

 (42) 

where 
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( )(2) (2) (1) (1)2
1 2 1 2(1) 2P b pb pb b′′ = + +λ  

and 

( )(1) (1)
1 2 .b pb= +ρ λ  

The above results match with those obtained by Artelejo and Choudhury (2004). 

Case 5: Mx/G/1 queue with classical retrial policy 

If we set, αi = 0, (1) (2), 0,i ir r =  ∀i = 1, 2, σ1 = 0, σ2 = 0 and p = 0, then equation (32) 
yields 

( )
( ) [ ] ( )[ ]2 (2)12

1( ) ( 1)
2(1 ) ( ) (1 ) 2(1 )O

E X E X bE XE N
E X

+ −
= + +

− − −
λ ρ λρ

ρ θ ρ ρ
 (43) 

where 
(1)
1( ) .E X b=ρ λ  

This model is consistent with that of Falin and Templeton (1997). 

8 Stochastic decomposition property 

In this section, we present stochastic decomposition property of the system size 
distribution. The stochastic decomposition property for the system size has been 
established for the retrial queuing systems with optional service, vacation and unreliable 
server. The stochastic decomposition law for retrial queues has also been studied by Yang 
and Templeton (1987) and Fuhrmann and Cooper (1985). 

The average number of customers (L) in the system can be expressed as the sum of 
two independent random variables, one of which is the average number of the customers 
(L1) in the MX/G/1 queuing system with optional service and vacation subject to server 
breakdown and the other one is the average number of repeated customers (M1) given that 
the server is idle, i.e., L = L1 + M1. Thus, 

( )
[ ]

(1 ) 1 ( ) ( ) ( )( )
( ) (1 )

( ) ( )

C z P z zz
P z z

z z

⎡ ⎤− − ⎡ ⎤= ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦
≡ Ω

ρ λψπ
ρ

η

 (44) 

where 
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(1 ) 1 ( ) ( )
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C z P z

z
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= ⎢ ⎥−⎣ ⎦

ρ
η  
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( )Ω( ) .
(1 )
λψ zz

ρ
⎡ ⎤= ⎢ ⎥−⎣ ⎦

 

The first fraction of equation (44), η(z) is the PGF of the system size distribution at 
departure epoch of the MX/G/1 queuing system with optional service and vacation subject 
to server breakdown whereas the second fraction of equation (44), Ω(z) denotes the PGF 
of the number of the blocked customers given that the system is idle. 

9 Numerical illustration 

In this section, we present numerical illustration in order to verify the implementation of 
analytical results. To develop computational program, software MATLAB has used and 
the results are displayed in Tables 2–3 and Figures 1(a)–1(c) to Figures 8(a)–8(c). We 
examine the effects of some system parameters such as arrival rate (λ), service rates  
(μ1, μ2), failure rates (α1, α2), repair rates (β1, β2), vacation rates (ν1, ν2), retrial rate (θ), 
probabilities p and σ1 on the average system size (E(NS)). We consider (a) MX/E2/1 model 
and (b) MX/γ/1 model for computational purpose. We set default parameters as  
λ = 0.7, θ = 0.2, ν = 0.4, α1 = 0.6, α2 = 0.7, β1 = 1.9, β2 = 1.6, p = 0.4, μ1 = 1.5, μ2 = 2,  
σ1 = 0.3, σ2 = 0.2, ν1 = 0.3, ν2 = 0.4 and E(X) = 1 for Tables 2–3 and Figures 1(a)–1(c) to 
Figures 8(a)–8(c). 

Table 2 Effect of p, λ, μ1 and ν1 on long run probabilities of the server states 

p = .1 p = .9 
α1 β1 σ1 

P(I) P(FG) P(SG) P(V) P(I) P(FG) P(SG) P(V) 

.1 1 .3 0.902 0.054 0.003 0.040  0.894 0.054 0.027 0.023 

.2 1 .3 0.804 0.108 0.006 0.081  0.789 0.108 0.055 0.047 

.3 1 .3 0.706 0.162 0.009 0.122  0.683 0.162 0.083 0.070 

.4 1 .3 0.608 0.216 0.012 0.162  0.578 0.216 0.110 0.094 

.5 1 .3 0.510 0.270 0.015 0.203  0.472 0.270 0.138 0.117 

.7 1 .3 0.314 0.378 0.021 0.285  0.261 0.378 0.194 0.165 

.7 2 .3 0.503 0.189 0.021 0.285  0.451 0.189 0.194 0.165 

.7 3 .3 0.567 0.126 0.021 0.285  0.514 0.126 0.194 0.165 

.7 4 .3 0.598 0.094 0.021 0.285  0.546 0.094 0.194 0.165 

.7 5 .3 0.617 0.075 0.021 0.285  0.565 0.075 0.194 0.165 

.7 1 .3 0.314 0.378 0.021 0.285  0.261 0.378 0.194 0.165 

.7 1 .4 0.381 0.378 0.021 0.217  0.269 0.378 0.194 0.157 

.7 1 .5 0.422 0.378 0.021 0.177  0.273 0.378 0.194 0.153 

.7 1 .6 0.449 0.378 0.021 0.150  0.276 0.378 0.194 0.150 

.7 1 .7 0.468 0.378 0.021 0.130  0.279 0.378 0.194 0.147 
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Table 3 Effect of p, α1, β1 and σ1 on long run probabilities of the server states 

p = .1 p = .9 
α1 β1 σ1 

P(I) P(FG) P(SG) P(V) P(I) P(FG) P(SG) P(V) 
.1 1.9 .3 0.482 0.210 0.021 0.285 0.430 0.210 0.194 0.165 
.2 1.9 .3 0.472 0.221 0.021 0.285 0.419 0.221 0.194 0.165 
.3 1.9 .3 0.461 0.231 0.021 0.285 0.409 0.231 0.194 0.165 
.4 1.9 .3 0.451 0.242 0.021 0.285 0.398 0.242 0.194 0.165 
.5 1.9 .3 0.440 0.252 0.021 0.285 0.388 0.252 0.194 0.165 
.5 1 .3 0.393 0.300 0.021 0.285 0.340 0.300 0.194 0.165 
.5 2 .3 0.443 0.250 0.021 0.285 0.390 0.250 0.194 0.165 
.5 3 .3 0.460 0.233 0.021 0.285 0.407 0.233 0.194 0.165 
.5 4 .3 0.468 0.225 0.021 0.285 0.415 0.225 0.194 0.165 
.5 5 .3 0.473 0.220 0.021 0.285 0.420 0.220 0.194 0.165 
.5 1.9 .3 0.440 0.252 0.021 0.285 0.388 0.252 0.194 0.165 
.5 1.9 .4 0.350 0.252 0.021 0.375 0.378 0.252 0.194 0.175 
.5 1.9 .5 0.260 0.252 0.021 0.465 0.368 0.252 0.194 0.185 
.5 1.9 .6 0.170 0.252 0.021 0.555 0.358 0.252 0.194 0.195 
.5 1.9 .7 0.080 0.252 0.021 0.645 0.348 0.252 0.194 0.205 

Tables 2 and 3 display the effect of λ, μ1, ν1, α1, β1 and σ1 for the different values of p on 
various performance characteristics. From Tables 2–3, it is noted that P(I) decreases on 
increasing the values of λ, α1 and σ1 while increases with other system parameters for 
both the values of p. On the other hand, P(FG) show the increasing (decreasing) trend 
with increasing values of λ, α1(μ, β1). As we increase the values of λ, increasing pattern 
is followed by P(SG) and P(V). It is also seen that P(V) decreases (increases) for 
increasing the values of ν1 (σ1) for both the values of p. On the contrary, P(FG) and 
P(SG) remain constant for ν1 and σ1. Moreover, P(SG) and P(V) almost remain constant 
for the increasing values of μ1, α1, β1 and p. 

In Figures 1(a)–1(c) to Figures 8(a)–8(c), we display the effect of various parameters 
on average system size (E(NS)) for MX/E2/1 and MX/γ/1 models for different values of p, 
σ1, θ and E(X). We choose the continuous (discrete) lines correspond to MX/E2/1 (MX/γ/1) 
model. It is seen from Figures 1(a)–1(c) to Figures 2(a)–2(c) that E(NS) first increases 
(decreases) slowly then after sharply for increasing values of λ(μ1 and μ2). It is also 
observed that the average system size increases sharply with respect to probabilities p and 
σ1. 

Figures 3(a)–3(c) to Figures 6(a)–6(c) illustrate the graphs for the average system size 
for different values of p and σ1 by varying α1, β1, ν1, α2, β2 and ν2, respectively. It is 
claimed from these figures that E(NS) shows the gradual increasing trend on increasing 
the values of the failure rates, i.e., α1 and α2. Further, as we increase the values of repair 
rates (β1 and β2) and vacation rates (ν1 and ν2) the decreasing pattern has been observed 
for E(NS) for the different values of p and σ1. The results are more prominent for MX/γ/1 
model rather than that of MX/E2/1 model. 
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Figure 1 The effect of (a) λ, (b) μ1, and (c) μ2 on E(NS) for the different values of p 

0
2
4
6
8

10
12
14

0.5 0.6 0.7 0.8 0.9 1

λ

E(
N S

)

p=.4 p=.5 p=.6
p=.4 p=.5 p=.6

 
(a) 

1
1.5

2
2.5

3
3.5

4
4.5

1 1.2 1.4 1.6 1.8 2

μ1

E(
N S

)

p=.4 p=.5 p=.6
p=.4 p=.5 p=.6

 
(b) 

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6

μ2

E(
N S

)

p=.4 p=.5 p=.6
p=.4 p=.5 p=.6

 
(c) 

 

 

 



   

 

   

   
 

   

   

 

   

    A batch arrival retrial queuing system for essential and optional services 35    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 The effect of (a) λ, (b) μ1, and (c) μ2 on E(NS) for the different values of σ1 
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Figure 3 The effect of (a) α1, (b) β1, and (c) ν1 on E(NS) for the different values of p 
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Figure 4 The effect of (a) α1, (b) β1, and (c) ν1 on E(NS) for the different values of σ1 
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Figure 5 The effect of (a) α2, (b) β2, and (c) ν2 on E(NS) for the different values of p 

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0.5 0.6 0.7 0.8 0.9 1

α2

E(
N S

)
p=.4 p=.5 p=.6
p=.4 p=.5 p=.6

 
(a) 

0.5

1

1.5

2

2.5

1 2 3 4 5 6

β2

E(
N S

)

p=.4 p=.5 p=.6
p=.4 p=.5 p=.6

 
(b) 

0.5

1

1.5

2

2.5

3

3.5

0.2 0.3 0.4 0.5 0.6 0.7

ν2

E
(N

S)

p=.4 p=.5 p=.6
p=.4 p=.5 p=.6

 
(c) 

 

 

 



   

 

   

   
 

   

   

 

   

    A batch arrival retrial queuing system for essential and optional services 39    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 The effect of (a) α2, (b) β2, and (c) ν2 on E(NS) for the different values of σ1 
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Figure 7 The effect of (a) λ, (b) μ1, and (c) μ2 on E(NS) for the different values of θ 
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Figure 8 The effect of (a) λ, (b) μ1, and (c) μ2 on E(NS) for the different values of E(X) 
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From Figures 7(a)–7(c) to Figures 8(a)–8(c), it can be easily seen that on increasing 
(decreasing) the values of λ(μ1 and μ2), average system size first increases (decreases) 
slowly then after sharply. On the other hand, average system size shows the increasing 
trend for the increasing values of retrial rate and batch size respectively, which is quite 
obvious. 

From the numerical results summarised in the form of tables and graphs, we overall 
conclude the following observations: 

• As we expect, the average system size increases on increasing the arrival rate and 
failure rates; but decreases with service rates, repair rates and vacation rates, which 
tally with the real life situations. 

• Our analysis advises to the system analysts and the decision makers that the grade of 
service can be improved by controlling some sensitive parameters such as arrival rate 
and failure rate. 

10 Conclusions 

The performance analysis of bulk arrival retrial queue with random service interruption 
and Bernoulli vacation is presented in the present investigation. The provision of 
Bernoulli vacation and SOS make our model more versatile in real congestion situations. 
In this investigation, vacation models considered may be helpful for the queuing systems 
wherein the server may intend to utilise the idle time for rest or doing other tasks. The 
queuing model developed by incorporating many features simultaneously including 

1 bulk arrival 

2 retrial 

3 unreliable server 

4 vacation, 

makes our results applicable to more versatile and real life congestion situations 
encountered in a variety of congestion problems ranging from day to day as well as 
industrial queues such as computer and communication systems, distribution and service 
sectors, production and manufacturing systems, etc. 
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Appendices 

A.I Proof of Theorem 1 

First we consider the case of linear retrial policy. On solving the differential equation 
(10), we get the generating function of the stationary queue size distribution given in 
equation (13a). Then by putting z = 0 in equation (13a), we can determine the value of π0 
as given in equation (13b). 

Now, for the case of classical retrial policy the differential equation (10) directly 
provides the result given in equation (14a). 

Using, the relation π0 = λψ(0),  the value of π0 can be easily obtained as given in 
equation (14b). 

Finally, in the case of constant retrial policy, on substituting θ = 0 in equation (10), 
we have the result as given in equation (15a). Now, in order to obtain the value of π0 as 
given in equation (15b), we take limit z → 1 in equation (15a) and apply L-Hospital rule 
once. 

A.II Proof of Lemma 1 

We observe that 

,
1(0, ) ,  0,  0n j n

j
j n jψ δ

λ θ
= ≥ ≥

+
 (A.1) 

where 

{,
1,  if  
0,  if  j n

n j
n jδ == ≠  

Then utilising equation (A.1) in equation (16), we obtain the limiting probability P0,j as 
given in equation (18). 

Next, we suppose that a modified service time ends leaving n customers in the orbit. 
For the customer who receives the next service, we may distinguish two cases according 
to the origin. For this case, we assume that this customer is a primary one then his FES 
starts at time (say) t = 0. It is observed that the time interval (t, t + Δt) contributes to  
ψn(1, j) if 

1 the FES has not been completed before time t with probability [1 – G1(t)] 

2 j – n primary customers arrive during (0, t]. Thus, 
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Now, using equations (A.2) and (16), we get equation (19). 
If the service of the customer proceeds from the orbit, then it can be analysed 

analogously from the second term in the right hand side of expression (A.2). 
Other quantities ψn(2, j) and ψn(3, j) can be obtained in the similar manner as 
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Hence, we obtain equations (20) and (21) by using the results given in above equations 
(A.3) and (A.4), respectively in equation (16). 

A.III Proof of Theorem 2 

On multiplying equations (18) to (21) by appropriate powers of z and then summing over 
j for j = 0, 1, 2,…, we get equations (22) to (25). 

A.IV Proof of Theorem 3 

The partial generating functions obtained in Theorem 2 are summed up to give the 
distribution of the number of customers in the orbit. Then, 

0 1 2 3( ) ( ) ( ) ( ) ( )R z P z P z P z P z= + + +  (A.5) 

After doing some algebraic manipulations, we get result given in equation (26). 

A.V Proof of Theorem 4 

The stationary distribution of the total number of customers in the system is 

( ) ( )0, ,0 1, 1 2, 1 3, 11 ,  0n n n n n nP P P P P nδ − − −= + − + + ≥  (A.6) 

Then the corresponding generating function Q(z) can be easily obtained by multiplying 
above equation with appropriate powers of z and then summing over n for n = 0, 1, 2,…, 
as 

[ ]0 1 2 3( ) ( ) ( ) ( ) ( )Q z P z z P z P z P z= + + +  (A.7) 

Substituting the values of P1(z), P2(z), P3(z) from equations (23) to (25), respectively in 
equation (A.7), we obtain the desired results as given in equation (27). 


