Evaluating the performance of look-ahead policies for upstream serial processor with downstream batch processor serving incompatible job families and finite buffer sizes
by John Benedict C. Tajan; Appa Iyer Sivakumar; Stanley B. Gershwin
International Journal of Operational Research (IJOR), Vol. 15, No. 3, 2012

Abstract: Batch processors can concurrently process more than one job. In wafer fabrication, the processing time of a batch is independent of batch size, and only jobs from the same job family can be batched together. We consider a two-stage subsystem of a wafer fabrication facility (wafer fab), comprised of the diffusion furnace (a batch processor) and its upstream serial processor, with random job arrivals. We hypothesise that allowing the serial processor to anticipate the job family preference of the batch processor will reduce the overall cycle time of jobs passing through this system. To evaluate this hypothesis, we model the performance of the two-stage system under different system parameters and processor control policies as discrete state continuous time Markov chains. We characterise the system performance and show that the concept of constraining the production of the upstream processor according to the anticipated needs of the batch processor can reduce the mean cycle time of jobs being processed. We also perform simulation experiments to show that a simple heuristic based on this insight can translate to substantial cycle time reductions for systems with assumptions closer to those found in wafer fabs.

Online publication date: Sun, 11-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Operational Research (IJOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com