Heat as a by-product or sub-product of CO2 storage in mafic and ultramafic rocks
by Diogo R.N. Rosa; Rui N. Rosa
International Journal of Global Warming (IJGW), Vol. 4, No. 3/4, 2012

Abstract: Since carbonates are at a lower energy state than free CO2, storage through carbonation of silicate rocks is thermodynamically favoured and proceeds spontaneously by releasing heat. In an in-situ CO2 injection site, the heat released in these exothermic reactions can be exploited in a geothermal power-plant, effectively contributing toward the economic viability of the storage process. Our calculations suggest the possibility of generating up to about 25 TWh of electrical energy while capturing permanently about 240 Mton CO2 per 1 km³ of peridotite or basalt rock. That broadly corresponds to exploring an electric power plant having up to 60 MW gross output during a period of 50 years. These results show that geothermal energy and CO2 storage, often portrayed as conflicting uses of the subsurface, can actually work together, enhancing the economic feasibility of each other in case mafic and/or ultramafic rock formations are used as reservoirs.

Online publication date: Sat, 13-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com