

 Int. J. Agile and Extreme Software Development, Vol. 1, No. 1, 2012 23

 Copyright © 2012 Inderscience Enterprises Ltd.

Documentation strategies on agile software
development projects

Rashina Hoda*, James Noble and
Stuart Marshall
School of Engineering and Computer Science,
Victoria University of Wellington,
P.O. Box 600, Wellington 6140, New Zealand
E-mail: rashina@ecs.vuw.ac.nz
E-mail: kjx@ecs.vuw.ac.nz
E-mail: stuart@ecs.vuw.ac.nz
*Corresponding author

Abstract: Agile software development methods and their proponents suggest
‘just enough’ documentation on agile projects. However, for practitioners of
these methods it remains unclear how much is ‘just enough’ documentation.
Based on a grounded theory study of 58 agile practitioners from 23 different
software organisations in New Zealand and India, we found several
documentation strategies being used by agile teams to overcome various
challenges they faced. These documentation strategies include documenting
electronic back-ups of physical paper artefacts that are prone to damage and
loss; documenting change decisions by customers to trace changes and
avoid disagreements; documenting business terminology for more effective
requirements elicitation; documenting the traditional way when collaborating
with non-agile teams; and documenting positive customer feedback to
demonstrate advantage of agile adoptions. These documentation strategies
collectively help define ‘just enough’ documentation by describing the different
forms and amounts of documentation agile teams engage in.

Keywords: agile software development; documentation; self-organising teams;
software engineering; grounded theory.

Reference to this paper should be made as follows: Hoda, R., Noble, J. and
Marshall, S. (2012) ‘Documentation strategies on agile software development
projects’, Int. J. Agile and Extreme Software Development, Vol. 1, No. 1,
pp.23–37.

Biographical notes: Rashina Hoda is a Post-Doctoral Researcher and Lecturer
at the School of Engineering and Computer Science, Victoria University of
Wellington, New Zealand. She holds a PhD in Computer Science from
Victoria University of Wellington, New Zealand, Bachelors in Computer
Science Summa-Cum-Laude from Louisiana State University, USA, in 2003,
and is a Certified Scrum Master (2009). Her doctoral research focused on
self-organising agile teams and her research interests include software
engineering, agile software development, empirical studies, project
management and human computer interaction.

James Noble is a Professor and the Head of Research at the School of
Engineering and Computer Science, Victoria University of Wellington,
New Zealand. His research interest centres around software design, ranging
from object-orientation, aliasing, design patterns, and agile methodology,
via usability and visualisation, to postmodernism and the semiotics of
programming.

 24 R. Hoda et al.

Stuart Marshall is a Lecturer at the School of Engineering and Computer
Science, Victoria University of Wellington, New Zealand. His research
interests include information and software visualisation, software user
interfaces on mobile devices, and agile software development.

1 Introduction

Principles of agile software development support working software over comprehensive
documentation (Highsmith and Fowler, 2001). Proponents of agile methods often suggest
the use of ‘just enough’ documentation on agile projects. What constitutes ‘just enough’
documentation, however, has been a topic of debate. Some people support the view that
documentation on agile projects should be kept to a minimum in the traditional sense
(Beck, 2007; Cohn, 2006; Jeffries, 2010). Beck (2007) seems to suggest that well-written
code is its own documentation such that code should be so clearly and well-written that it
should not require any extra documentation in the traditional sense. Jeffries (2010)
supports adding comments to clarify code and considers unit tests and acceptance tests as
executable forms of documentation. Documentation on agile projects is often seen as
secondary to code and as a means to support communication (Kajko-Mattsson, 2008).

Ambler (2010) argues that agile software development does not forbid documentation
altogether but does expect the practitioners to justify its need and use. Similarly, Ruping
(2003) addressed this issue in his agile documentation pattern ‘individual documentation
requirements’ by claiming that every project should define its own documentation
requirements which suggests ‘just enough’ is context-specific.

Finally, some other groups of practitioners and researchers assert that not only will
the level of documentation required on a project vary based on project contexts, but also
that some amount of traditional documentation may be unavoidable in certain contexts
(Hoda et al., 2010b). They go on to question the suitability and value of agile software
development methods in project contexts which require comprehensive documentation
efforts.

With such varying opinions and rather contradictory advices on the subject of
documentation on agile projects, agile software development teams may find themselves
struggling to define ‘just enough’ documentation in different project contexts they face.
There is little empirical evidence on the different forms and amounts of documentation
used on agile projects.

Based on a grounded theory study of 58 agile practitioners from 23 software
development organisations in New Zealand and India, this article present some practical
examples of documentation used on agile projects. These documentation strategies were
being used by agile teams not just as a part of the development process but also
specifically to overcome various challenges of performing agile software development.
These strategies include:

• documenting electronic back-ups of physical paper artefacts

• documenting change decisions made by customers

• documenting business terminology in a project dictionary

 Documentation strategies on agile software development projects 25

• documenting traditional functional specifications when collaborating with non-agile
teams

• documenting positive customer feedback to demonstrate advantage of agile
adoptions.

These documentation strategies collectively help define ‘just enough’ documentation by
describing the different forms and amounts of documentation agile teams engage in on a
day to day basis.

This article is an extension of our patterns paper on the same topic (Hoda et al.,
2010c). The rest of the article is structured as follows: Section 2 presents our research
method – grounded theory. Section 3 describes the documentation strategies. Section 4
presents a discussion of previous literature in the light of our findings. Section 5 presents
some limitations of our research followed by the conclusion in Section 6.

2 Research method

Grounded theory was developed by Glaser and Strauss in 1967 as systematic method of
data collection and analysis which captures a pattern of behaviour most relevant and
problematic for the participants (Hoda, 2011).

Figure 1 Grounded theory life-cycle (GTLC) (see online version for colours)

Source: Hoda et al. (2011a)

 26 R. Hoda et al.

Grounded theory, used as a qualitative research method, enables the study of people and
interactions in order to capture the main concern of the participants and how they go
about resolving it. We used grounded theory as a qualitative research method to study
self-organising agile software development teams (Hoda, 2011).
Table 1 Grounded theory terms and descriptions

Term Description

Minor literature
review

The researcher can start off with a light literature review enough to carry on a
conversation with the participants.

Theoretical
sampling

A process which allows the researcher to collect, code, and analyse the data
and then decide what data to collect next (Glaser, 1978).

Open coding The first step of analysis and starts by collating key points from raw data.
These are then assigned a code – a phrase that summaries the key point in
two or three words (Glaser, 1978).

Constant
comparison
method

A process by which codes arising out of each interview are constantly
compared against the codes from the same interview, and those from other
interviews and observations, producing higher levels of data abstraction
(Glaser, 1978).

Memoing The ongoing process of writing theoretical notes throughout the GT process.
Memos capture the conceptual links between categories as the researcher
notes down their reflections on different categories.

Core category Several categories emerge as a result of data analysis and the one that is able
to account for most variations in the data and relates meaningfully and easily
with other categories is called the core category (Glaser, 1978).

Selective coding Once the core category is established, the researcher ceases open coding and
uses selective coding – a procedure where they code for only the core
category and those categories that are closely related to the core.

Theoretical
saturation

When further data collection and analysis on a particular category leads to a
point of diminishing results – no new insight into the category is generated –
the category is said to have reached theoretical saturation (Glaser, 1978). The
researcher can then stop collecting data and coding for that category.

Major literature
review

As the theory starts to emerge, the researcher can conduct extensive literature
review to see how the literature in the field relates to their emerging theory.

Sorting Once the researcher has nearly finished data collection and coding is almost
saturated, they can begin arranging the theoretical memos on a conceptual
level or sorting. Sorting results in an outline of the theory describing how the
different categories relate to the core category (Glaser, 1978).

Theoretical
coding

Glaser lists several common structures of theories or theoretical coding
families (Glaser, 1978) which can be used as a framework to describe how
the categories relate to each other as hypotheses to be integrated into a
theory. This is called theoretical coding.

Write up The final step in GT is writing up the theory, which follows the theoretical
outline generated as a result of sorting and theoretical coding.

Source: Hoda (2011)

Figure 1 presents an overview of the GT method or the GTLC (Hoda, 2011; Hoda et al.,
2011a). The diagram captures the main procedures of the grounded theory method but
does not imply a linear sequence because GT procedures are cycled and go on
“simultaneously, sequentially, subsequently, serendipitously” (Glaser, 1978). The main
components of the GT method are further described in Table 1.

 Documentation strategies on agile software development projects 27

Table 2 Participants and projects

P#

Po
si

tio
ns

M

et
ho

d
O

rg
. s

iz
e*

Lo

ca
tio

n
D

om
ai

n
Te

am
 si

ze

Pr
oj

ec
t

(m
on

th
s)

Ite

ra
tio

n
(w

ee
ks

)

P1
-P

9
D

ev
 x

 3
, B

A
, A

C
 x

 2
,

A
T,

 T
es

te
r,

C
us

t.
R

ep
.

Sc
ru

m

M

N
Z

H
ea

lth

7
9

2

P1
0

A
C

Sc

ru
m

 a
nd

 X
P

L
N

Z
So

ci
al

 se
rv

ic
es

4

to
 1

0
3

to
 1

2
2

P1
1-

P1
8

D
ev

x6
, A

C
, S

M

Sc
ru

m
 a

nd
 X

P
S

N
Z

En
vi

ro
nm

en
t

4
to

 6

12

1
P1

9
SM

Sc

ru
m

 a
nd

 X
P

S
N

Z
E-

co
m

m
er

ce

4
2

4
P2

0
A

C

Sc
ru

m
 a

nd
 X

P
X

L
N

Z
Te

le
co

m
 a

nd

tra
ns

po
rta

tio
n

6
to

 1
5

12

4

P2
1

C
us

t.
R

ep
.

Sc
ru

m

X
S

N
Z

En
te

rta
in

m
en

t
6

to
 8

9

4
P2

2
A

C

Sc
ru

m
 a

nd
 X

P
S

N
Z

G
ov

er
nm

en
t e

du
ca

tio
n

4
to

 9

4
2

P2
3

A
C

Sc

ru
m

 a
nd

 X
P

X
S

N
Z

So
ftw

ar
e

de
ve

lo
pm

en
t

8
12

1

P2
4-

P2
5

D
ev

 X
 2

Sc

ru
m

X

S
N

Z
So

ftw
ar

e
de

ve
lo

pm
en

t
8

to
 1

0
8

2
P2

6
A

C

Sc
ru

m
 a

nd
 X

P
S

N
Z

Fa
rm

in
g

8
12

2

P2
7-

P3
5

D
ev

 x
 4

, A
C

, T
es

te
r,

Sa
le

s,
M

an
ag

er
, S

M
 X

2

Sc
ru

m
 a

nd
 X

P
S

In
di

a
A

gi
le

 so
ftw

ar
e

de
ve

lo
pm

en
t a

nd

co
ns

ul
ta

nc
y

5
6

2

P3
6-

P3
9

A
C

 X
 4

Sc

ru
m

 a
nd

 X
P

M

In
di

a
So

ftw
ar

e
de

ve
lo

pm
en

t
7

to
 8

3

to
 6

2

P4
0

SM

Sc
ru

m
 a

nd
 X

P
S

C

R
M

 a
nd

 fi
na

nc
e

7
to

 8

on
go

in
g

3
P4

1
D

es
ig

ne
r

Sc
ru

m
 a

nd
 X

P
S

In
di

a
W

eb
-b

as
ed

 se
rv

ic
es

5

1
2

P4
2

A
C

Sc

ru
m

 a
nd

 X
P

L
In

di
a

Te
le

co
m

8

to
 1

5
3

4
P4

3
A

T
Sc

ru
m

 a
nd

 X
P

X
S

In
di

a
A

gi
le

 tr
ai

ni
ng

7

8
2

to
 4

P4

4-
P4

5
D

ev
 X

 2

Sc
ru

m
 a

nd
 X

P
X

S
In

di
a

So
ftw

ar
e

de
ve

lo
pm

en
t

4
1

1
P4

6-
P5

3
D

ev
, B

A
 ×

 2
, A

T,
 A

C,

K
S,

 H
R

, S
M

Sc

ru
m

 a
nd

 X
P

M

In
di

a
A

gi
le

 so
ftw

ar
e

pr
od

uc
ts

 a
nd

co

ns
ul

ta
nc

y

15

12

1

P5
4

A
C

Sc

ru
m

 a
nd

 X
P

M

In
di

a
Fi

na
nc

ia
l s

er
vi

ce
s

8
to

 1
1

36

2
P5

5
A

C

R
U

P
X

S
C

an
ad

a
Te

le
co

m

10
 to

 1
5

10
 to

 1
5

2
to

 4

P5
6

SM

Sc
ru

m

M

U
SA

O

il
an

d
en

er
gy

5

to
 8

12

2

P5
7

C
us

t.
R

ep
.

Sc
ru

m
 a

nd
 X

P
M

U

SA

C
R

M
 a

nd
 c

lo
ud

co

m
pu

tin
g

V
ar

ia
bl

e
V

ar
ia

bl
e

2
to

 4

P5
8

A
C

Sc

ru
m

 a
nd

 X
P

X
S

U
SA

H

ea
lth

V

ar
ia

bl
e

V
ar

ia
bl

e
2

to
 4

N
ot

es
: P

#:
 p

ar
tic

ip
an

t n
um

be
r;

po
si

tio
n:

 a
gi

le
 c

oa
ch

 (A
C

),
ag

ile
 tr

ai
ne

r (
A

T)
, d

ev
el

op
er

 (D
ev

),
cu

st
om

er
 re

p
(c

us
t r

ep
),

bu

si
ne

ss
 a

na
ly

st
 (B

A
),

se
ni

or
 m

an
ag

em
en

t (
SM

),
kn

ow
le

dg
e

st
ra

te
gi

st
 (K

S)
;

*o
rg

an
is

at
io

na
l s

iz
e:

 X
S

<
50

, S
 <

 5
00

, M
<

5,
00

0,
 L

<
50

,0
00

, X
L

>
10

0,
00

0
em

pl
oy

ee
s

 28 R. Hoda et al.

2.1 Data collection

We collected data from 58 agile practitioners from 23 different organisations in
New Zealand and India. These included practitioners in various organisational roles such
as developers, testers, business analysts, agile coaches, senior managers, and customers.
We supplemented the data collected from interviews with observations of agile practices.
The project duration varied from 2 to 12 months and the team sizes varied from
2 to 20 people on different projects. The organisational sizes varied from 10 to 300,000
employees. Table 2 provides a summary of the projects and participants.

We conducted semi-structured interviews with open-ended questions with all the
participants. We also observed workplaces, project artefacts, and agile practices like
release/iteration planning and daily stand-ups for a couple of teams in India and two
teams in New Zealand. Participants were practicing Scrum or a combination of Scrum
and XP.

All participants were practicing fundamental agile practices such as iterative and
incremental development (with varying iteration lengths), iteration/release planning,
estimation and planning of user stories and tasks, testing, status report meetings (such as
daily stand-up), frequent release of working software, and some form of retrospective
meetings. A majority of the participants engaged in test-driven development and pair
programming (on demand). In order to preserve their confidentiality, we refer to the
participants by their organisational titles and country.

2.2 Data analysis

We performed data analysis using grounded theory’s open coding, selective coding, and
finally theoretical coding procedures (see Table 1). We conducted the data collection and
analysis iteratively such that we refined interview questions to focus on the patterns
emerging from the analysis. Other procedures of grounded theory such as memoing,
sorting, etc. were also performed. A detailed description of the grounded theory method
and its application in this study is provided elsewhere (Hoda, 2011; Hoda et al., 2011a,
2010a).

As a result of this study, we generated a grounded theory of self-organising agile
teams which explains how software development teams take on informal, implicit,
transient, and spontaneous roles and perform balanced practices while facing critical
environment factors in order to become self-organising (Hoda, 2011). Details of how we
conducted our grounded theory study, including the various procedures of the grounded
theory method, are described in a doctoral thesis (Hoda, 2011).

3 Documentation strategies

In this article, we present the documentation strategies identified through our grounded
theory research. The descriptions include selected quotations drawn from the interviews
that shed particular light on these documentation strategies. The results are further
grounded in data, codes, and concepts which we cannot present in full detail due to space
concerns.

 Documentation strategies on agile software development projects 29

3.1 Documenting electronic back-up of paper artefacts

Agile teams make extensive use of paper artefacts to plan, display, and store their project
information. These paper artefacts include user stories represented on cards, tasks on
post-its, velocity or burn-down charts, etc. They serve as information radiators as they
are often displayed in highly visible areas on story walls for the benefit of the entire team.
While the importance of paper artefacts on agile projects is undeniable, they also run the
risk of being easily misplaced, lost, or damaged (Hoda et al., 2010c).

A participant shared their experience of losing important project data in the form of
their story board and all the paper post-its (representing the user stories and tasks):

“All of us sitting in the same space so we didn’t really bother with any formal
documentation... We’d made a heck of a mess of the walls... About beginning
of the fourth week, came into the office Monday morning and our walls are
pristine! The cleaners had been in and they had removed everything... All the
papers were gone, the story cards were gone, even the white board drawings
that we’d done were gone... In retrospect, really, really funny [but] at the time:
you walk in and your heart sinks... it took us 3 days just to get back to where
we were.” Senior Agile Coach, New Zealand

To make matters worse, the team had not documented any electronic back-ups of their
paper artefacts. As a result, they had to spend a significant amount of time recalling and
recreating all of their lost data. One of the strategies that they developed from this
experience was to maintain regular electronic back-ups of their paper artefacts. Such
back-ups can be documented in the form of digital photographs of several tasks and
stories after every significant change to the story wall.

“… at that point I realized how important are digital cameras! And from that
day onwards whenever I work with a story wall I at least make a daily backup,
just a photographic backup of what’s up there [on the wall].” Senior Agile
Coach, New Zealand

Some teams were documenting the stories and tasks by saving them electronically over
servers accessible by all members of their organisation. Such form of electronic
documentation also serves another important purpose: to allow distributed team members
(located in different parts of the country/world) to keep up-to-date with the data
otherwise easily available to the co-located team members in form of physical artefacts.

Electronic back-ups of paper artefacts become an important form of documentation
on agile projects. The responsibility of documenting electronic back-ups can be rotated
among team members or can be taken up entirely by the Scrum Master or Project
Manager on the team. The frequency of the electronic documentation depends on the
frequency of significant changes in the data stored on the artefacts. Some teams may find
it useful to document on a weekly basis while others may find it sufficient to document
these electronic back-ups every iteration.

3.2 Documenting change decisions

An important focus of agile software development methods is ‘responding to changes’
(Highsmith and Fowler, 2001) or ‘embracing change’ (Beck, 1999). Agile projects are
often marked by high degree and frequency of changes in requirements at various stages
of the project. Theoretically, customers can request changes in requirements at any time.
In Scrum projects, changes are allowed to be introduced anytime before the sprint

 30 R. Hoda et al.

(iterative development cycle) begins (Schwaber and Beedle, 2002). Such changes can be
even more frequent if the customer is co-located with the development team such as the
on-site customer in XP (Beck, 1999). One of the ways agile methods support a flexible
change structure is through the use of paper artefacts to plan and store project
requirements. The transient nature of these paper artefacts such as index cards or post-its
is meant to support the introduction of changes in requirements without any lengthy
change control process.

A challenge arising out of this arrangement is that it is difficult, if not impossible, to
trace change decisions made on paper artefacts. The need for tracing change decisions
may arise in the event of a disagreement between the team and their customers over
particular changes. Using legal contracts or rigid change control processes to resolve such
cases is counter-productive to the highly collaborative nature of agile software
development.

A strategy used by one of the teams to avoid disagreements over changes and enable
smooth resolution of such issues was to document all change decisions in the informal
format of a wiki document. The team would use a wiki to document the change requests
made by the customers with appropriate time-stamps.

“Clients change their minds a lot, that’s difficult. The answer to that is to get
agreement from the client at various stages and so when you refer back to
something that been agreed upon, hopefully you are not referring too far back,
you’re referring back to something recently that was agreed upon... transcribe
into wiki. There’s time stamping with wiki so you can always go back in case
somebody changes it. So a lot of times when you get into disagreements with
the client about features... what a feature is and isn’t and whether it’s in scope
or out of scope. You just have to be strict about it and pointing back say... hey
look two weeks ago we agreed that these story cards were gonna be done and
these story cards that we are questioning now were gonna be done in a certain
way and you can refer to it... I’m telling you the end result of a lot of pain of
learning. If you do not do something about documenting the decisions then you
get into verbal disagreements with the client and they are paying you money.”
Agile Coach, New Zealand

Documenting change decisions is valuable on agile projects which are typically
characterised by high fluctuations in requirements. Using a wiki to document change
decisions allows the team and customers to effectively trace changes while maintaining
an informal and open nature of collaboration between the two parties. Such
documentation helps bring in a defined structure to tracing changes while avoiding
unnecessary legal complications in most cases.

3.3 Documenting business terminology into a project dictionary

Agile methods expand the customer’s role in the entire process of software development
by involving them in providing requirements and clarifications on requirements and
providing timely feedback on developed features (Hoda et al., 2010d). Typically,
self-organising agile teams are meant to closely interact and collaborate with their
customers in order to elicit requirements from them instead of ‘talking’ to substantial
requirements documents. However, there exists a language gap between the technical
terminology used by the development team and the business terminology used by their
business customers (Hoda et al., 2010d). An impact of this language gap can be visible
when the user-stories, written in business terminology by customers, are translated into

 Documentation strategies on agile software development projects 31

technical tasks by the development team. Inability of the development team to understand
business terminology used by their customers can result in an ineffective translation of
business requirements into technical tasks. This ineffective translation can result in the
development of software features that are misaligned from the desired business drivers
(Hoda et al., 2010c, 2010d). An additional problem is that customer representatives often
do not have sufficient time to keep clarifying their business terminology.

A strategy developed by one of the Indian teams to overcome this challenge was to
document the business terminology used by their customers into a project dictionary
(Hoda et al., 2010c, 2010d):

“We have extensive documentation... a wiki [where the customers] have
explained their whole infrastructure... as and when they build up the
requirements they come and edit the document... its kind of like a glossary and
also the rules that figure in that world of theirs... we capture all that and ensure
our domain is represented exactly like that in code.... so when they say ‘a port
has to be in a cabinet which has to sit in a rack’ it directly translates to code!”
Developer, India

Documenting business terminology in a project dictionary helps overcome the undesired
consequences of the language barrier between business customers and the development
team. Such a project dictionary implemented as a wiki can be used to document the
business terms, their meanings, and context of use. Every project can have its own project
dictionary. Ideally, the customer, who is best acquainted with the business terms should
document as many business terms as possible on the wiki towards the beginning of the
project with the possibility of adding and updating later (Hoda at el., 2010c). A
motivation for customers to assume this responsibility is the benefit of not having to
clarify business terminology to multiple team members over and over.

3.4 Documenting the traditional way for non-agile teams

Agile methods are often introduced into a software organisation through a pilot team.
While the pilot team learns the agile principles, values and practices of particular agile
methods, they still need to function within a primarily non-agile organisational setting.
As such, agile teams often find themselves interacting and collaborating with other teams
in the organisation, most of which are non-agile. A lack of traditional documentation in
the form of functional specifications makes it difficult for the two teams to work together.
The project information captured in the form of user stories and tasks on pieces of paper
do not easily translate into traditional documentation such as functional specifications,
design documentations, quarterly reports, etc., as used by non-agile teams. One of our
participants disclosed how not having traditional documentation caused far reaching
consequences for their pilot agile team. Not only does lack of traditional documentation
inhibit effective collaboration between agile and non-agile teams, but it also influences
senior management’s decision to support agile teams in the long run:

“[The] other projects within [company name], if we tried to talk to them about
this or if they wanted to now anything, they’d ask about the functional
specifications and we’d just simply say there is none... they didn’t understand
at all and [so] trying to communicate to them was quite hard... If we had a
functional specification document, no matter how high level it was, it would at
least allow us to communicate a lot of the functionality and ideas within our
solutions to the rest of the organisation. That’s probably one of the hardest

 32 R. Hoda et al.

things we’ve managed to do, especially when we began integrating with other
projects. We were integrating two web-based solutions together, having one
functional specification of how something works and then a product backlog of
ideas and features, it just didn’t work... when we tried to integrate with a
project or when another project would want ideas about function and
specification, and we couldn’t give it to them, they used to get quite high-end
projects that had a lot of resources, a lot of money, a lot of political sway… and
since then I’ve found a lot of these projects contributed to the negativity of
management’s ideas to our projects as well. So a new project that started up,
well the original idea was that they’d replace everything we’d created, so
they’d start from scratch and redo everything we did, this was simply due to the
fact that we couldn’t give them functional specifications and they couldn’t
really copy our stuff and use it with theirs. So they thought they’d just scrap
us!” (undisclosed participant)

A solution to this problem is to engage in some amount of traditional documentation in
order to collaborate with non-agile teams (Hoda et al., 2010b).

The amount of traditional documentation agile teams need to produce depends on the
nature of the project and the level of collaboration with non-agile teams. Maintaining
traditional documentation (on top of agile artefacts such as story wall, velocity chart, and
burn-down charts, etc.) is an overhead for the agile team. Agile teams should therefore
try and keep these to a minimum (enough to continue collaboration with non-agile teams)
and at the same time try and explain their non-traditional forms of documentation to the
non-agile teams and help them gradually learn to extract the required information from
these agile artefacts.

3.5 Documenting positive customer feedback

Senior management support is a critical factor influencing self-organising agile teams
(Hoda et al., 2011b). It is crucial for a pilot agile team to gain the support of the senior
management within their organisation. The pilot agile team can attempt to secure senior
management support by demonstrating the success of their project. While traditional
metrics of cost, time, and scope can demonstrate the success of any project, the level of
customer satisfaction achieved is also an important measure of success. Agile teams
collaborate closely with their customers on a regular basis. A good self-organising agile
team that works diligently to satisfy their customers receives positive customer feedback.
Such feedback comes in various forms, such as during demos of features at the end of
iteration or in an e-mail. Agile teams are not always careful to document such positive
feedback which can be used to demonstrate their effectiveness and success to gain senior
management support:

“I think that’s one of the worst things with this project is that we never really
looked at collecting data, collecting actual raw statistics on how much we were
improving the project... we had some customer feedback and a lot of it was
positive but we never really remembered the positive, we only looked at the
negatives.” Agile Coach, New Zealand

Securing senior management support implies not only a continued support for the pilot
agile team, but also support for propagation of more agile teams in the organisation.
Documenting positive customer feedback and presenting it to senior management is an
important activity for agile teams, especially for pilot agile teams trying to prove the
advantage of agile methods. Both agile and non-agile projects can have appropriate data

 Documentation strategies on agile software development projects 33

to demonstrate their success by traditional metrics. Presenting documented positive
customer feedback can help agile teams demonstrate their advantage.

4 Discussion

Agile projects rely much more on tacit knowledge accumulated in the minds of the
development team rather than being dependent on traditional documentation (Boehm,
2002; Highsmith, 2003; Nerur et al., 2005; Sharp et al., 2009). Lack of explicit
documentation on agile projects may lead to several issues such as difficulties in tracing
design and change decisions (Kajko-Mattsson, 2008; Nerur et al., 2005). The
documentation strategies identified in our study help resolve some of these issues
addressed in previous literature as described below.

The need to document change decisions has been acknowledged as an important
activity in software development (Kajko-Mattsson, 2008; Nerur et al., 2005). Traditional
documentation is seen to improve traceability of design (Nerur et al., 2005). In their
study of 18 software organisations, Kajko-Mattsson (2008) found that 13 of the
18 organisations faced problems when making changes to software systems due to the
inability of software developers to trace changes decisions. In the absence of formal
record of decisions, the onus of remembering change decisions falls on the individual
team members (Sharp and Robinson, 2004). As described in the previous sections, our
study also supports the importance of tracing changes decisions, especially on agile
projects which are marked by high degree of changes. The strategy of documenting
change decisions on wikis with time-stamps proved to be one solution to this problem.

The use of physical paper artefacts on agile projects have been ethnographically
explored by Sharp and Robinson (2004). Paper artefacts such as index cards to store
requirements and estimates and story wall to capture project progress are common forms
of documentation on agile projects (Sharp and Robinson, 2004). These paper artefacts
are, however, prone to loss or damage and electronic alternatives have been explored
(Sharp et al., 2009). Our study also identified that loss and damage are common problems
faced by teams using physical paper artefacts. The documentation strategy found useful
to avoid loss of information in this manner was documenting electronic back-ups of the
paper artefacts on a frequent basis. The electronic back-up is done by taking digital
photographs of the cards and walls or by saving their textual information in wiki format.
Maintaining such electronic back-up documents on a regular basis, however, is an
overhead.

Based on previous literature, Kajko-Mattsson (2008) offer some arguments in favour
of traditional documentation which include better understanding and communication of
software systems, ease of learning the process, higher maintainability of software
systems, and improved productivity of the engineers. At the same time, they argue that
previous literature suggests that lack of proper documentation is the main cause for fast
quality degradation of software systems (Kajko-Mattsson, 2008). Overall, they claim that
while minimum documentation on agile projects helps gain higher productivity for the
team in the short-term, the long-term issues of maintainability and evolution are ignored
(Kajko-Mattsson, 2008). In particular, while agile teams experience higher levels of
communication and collaboration within the team, they tend to become isolated from the
rest of the organisation (Karlström and Runeson, 2005). Our study suggests that lack of

 34 R. Hoda et al.

traditional documentation is one of the causes for this isolation. In absence of traditional
documentation, the link between the agile and non-agile teams becomes weaker.

Karlström and Runeson (2005) further suggest that agile teams must be prepared to
interface with more traditional models of software development and predict that such
collaborations will require some ‘overheads’. In our study, we found that such overheads
come in the form of traditional documentation. Agile teams need to prepare some amount
of traditional documentation such as design documents and functional specifications
when collaborating with non-agile teams in order to improve communication between the
two.

The importance of senior management support in adoption of agile methods has been
widely acknowledged (Chow and Cao, 2008; Dybå and Dingsoyr, 2008; Nerur et al.,
2005; Tolfo and Wazlawick, 2008). Our study confirms that the long term success of
self-organising agile teams is highly dependent on senior management support from
within the organisation (Hoda, 2011; Hoda et al., 2011b). Securing senior management
support, therefore, is critical for agile teams. One of the ways they can secure
management support is by demonstrating the advantage of using agile methods.
Documenting positive customer feedback received at various stages of the project and
presenting it to senior management can help senior management appreciate the agile
project from a customer satisfaction perspective.

Overall, the documentation strategies identified in our research help overcome some
of the issues raised by lack of documentation on agile projects as experienced by our
participants and as addressed in previous literature.

5 Implications for practice

Agile methods often suggest the use of ‘just enough’ documentation on agile projects.
Practitioners are, however, often left wondering what constitutes ‘just enough’
documentation. Our study identified some documentation strategies that were being used
by agile teams not just as a part of the development process but also specifically to
overcome various challenges of performing agile software development. These
documentation strategies collectively help define ‘just enough’ documentation by
describing the different forms and amounts of documentation agile teams engage in on a
day to day basis. We summarise the strategies and comment on their implications for
practice below:

• Documenting electronic back-ups of physical paper artefacts. Using this strategy,
agile teams can effectively manage the data captures in the paper artefacts and ensure
its durability.

• Documenting change decisions made by customers. Paper artefacts are meant to aid
changes in requirements and development. Keeping track of changes made on paper,
however, is not easy. Using this strategy, agile teams can effectively keep a track of
the change decisions made during their projects. Such documentation in the form of
wikis is especially valuable in situations where the team and their customer may
disagree on nature or extent of certain changes.

 Documentation strategies on agile software development projects 35

• Documenting business terminology in a project dictionary. Using this strategy, agile
teams can build a set of business terminology commonly used by the customers
along with their meanings and context of use. This information can help
development teams in translating customer requirements (written in business
language) into technical tasks. Project dictionaries can be shared across teams
working on the same project.

• Documenting traditional functional specifications when collaborating with non-agile
teams. Using this strategy, agile teams (especially pilot agile teams in non-agile
organisations) can communicate and liaise better with non-agile teams. Some
amount of traditional documentation, such as functional specifications, allows a
communication link to be maintained between agile and non-agile teams. Once the
agile team gets established, they can attempt to encourage non-agile teams to better
understand and work with the documentation available in an agile environment.

• Documenting positive customer feedback to demonstrate advantage of agile
adoptions. Using this strategy, agile teams can capture positive customer feedback
and use that as a mechanism to demonstrate their effectiveness as a team. This
strategy can be employed to secure and maintain senior management support for
self-organising agile teams.

6 Limitations

A limitation of this study is that the contexts studied were dictated by the choice of
research destinations, which in turn were in some ways limited by our access to them.
Similarly, the selection of research participants was limited by their willingness to
participate. A limitation of the grounded theory method is that the findings explain the
context studied and the results are not claimed to be universal.

7 Conclusions

Proponents of various agile methods have multiple and often conflicting views on the
subject of documentation on agile projects. The concept of ‘just enough’ documentation
is meant to be context-specific and leaves the everyday practitioners of agile methods
wonder how much is ‘just enough’ documentation in their own contexts. Based on a
Grounded Theory study of 58 agile practitioners from 23 software development
organisations in New Zealand and India, we have presented some practical examples of
documentation used on agile projects. These documentation strategies were being used by
agile teams to overcome various challenges of performing agile software development on
a day to day basis. These strategies include: documenting electronic back-ups of physical
paper artefacts; documenting changes decisions made by customers; documenting
business terminology into a project dictionary for more effective requirements elicitation;
documenting the traditional way when collaborating with non-agile teams; and
documenting positive customer feedback to demonstrate advantage of agile adoptions.
Most of these strategies used an informal documentation format such as a wiki, except for
one where there was no clear alternative to producing some amount of traditional

 36 R. Hoda et al.

documentation when collaborating with non-agile teams. These documentation strategies
collectively provide empirical evidence to help define ‘just enough’ documentation by
describing the different forms and amounts of documentation used on agile projects.
Future studies could use some of these strategies and explore their use and effectiveness
in different project contexts or in relation to different agile practices such as
pair-programming or continuous integration.

Acknowledgements

We thank all the participants of our research. We thank BuildIT (NZ) for a PhD
scholarship, the Agile Alliance (USA) for an academic grant, Software Process and
Product Improvement (NZ), and the School of Engineering and Computer Science
(VUW) for their financial support of this research. We also thank Dr. Philippe Kruchten
(Canada) for his valuable suggestions.

References
Ambler, S. (2010) ‘Agile/lean documentation strategies for agile software development’, February,

available at http://www.agilemodeling.com/essays/agileDocumentation.htm (accessed on
18 August 2011).

Beck, K. (1999) Extreme Programming Explained: Embrace Change, 1st ed., Addison-Wesley
Professional, Upper Saddle River, NJ, USA.

Beck, K. (2007) ‘A theory of programming’, Dr. Dobb’s Journal, 21 November, available at
http://drdobbs.com/architecture-and-design/204201170 (accessed on 18 August 2011).

Boehm, B. (2002) ‘Get ready for agile methods, with care’, Computer, January, Vol. 35, No. 1,
pp.64–69.

Chow, T. and Cao, D. (2008) ‘A survey study of critical success factors in agile software projects’,
Journal of Systems and Software, Vol. 81, No. 6, pp.961–971.

Cohn, M. (2006) Agile Estimating and Planning, Pearson Education, Upper Saddle River, NJ.
Dybå, T. and Dingsoyr, T. (2008) ‘Empirical studies of agile software development: a systematic

review’, Inf. Softw. Technol., Vol. 50, Nos. 9–10, pp.833–859.
Glaser, B. (1978) Theoretical Sensitivity: Advances in the Methodology of Grounded Theory,

Sociology Press, Mill Valley, CA.
Glaser, B. and Strauss, A.L. (1967) The Discovery of Grounded Theory, Aldine, Chicago.
Highsmith, J and Fowler, M. (2001) ‘The agile manifesto’, Software Development Magazine,

Vol. 9, No. 8, pp.29–30.
Highsmith, J. (2003) Cutter Consortium Reports: Agile Project Management: Principles and Tools,

February, Vol. 4, p.2, Cutter Consortium, Arlington, MA.
Hoda, R. (2011) ‘Self-organizing agile teams: a grounded theory’, PhD thesis, Victoria University

of Wellington, New Zealand.
Hoda, R., Noble, J. and Marshall, S. (2010a) ‘Organizing self-organizing agile teams’, in

Proceedings of the International Conference of Software Engineering (ICSE), Cape Town.
Hoda, R., Noble, J. and Marshall, S. (2010b) ‘Agility in context’, in OOPSLA, pp.74–88, ACM,

Reno/Nevada, USA.
Hoda, R., Noble, J. and Marshall, S. (2010c) ‘How much is just enough? Some documentation

patterns on agile projects’, in Proceedings of the European Conference on Pattern Languages
of Programs (EuroPLoP), Hillside Group, Germany.

 Documentation strategies on agile software development projects 37

Hoda, R., Noble, J. and Marshall, S. (2010d) ‘What language does agile speak?’, in Proceedings of
the International Conference on Agile Software Development (XP), Trondheim, pp.387–388.

Hoda, R., Noble, J. and Marshall, S. (2011a) ‘Developing a grounded theory to explain the
practices of self-organizing agile teams’, Empirical Software Engineering, Online 1st ed.,
pp.1–31, available at http://dx.doi.org/10.1007/s10664-011-9161-0.

Hoda, R., Noble, J. and Marshall, S. (2011b) ‘Supporting self-organizing agile teams: what’s senior
management got to do with it?’, in Proceedings of the International Conference on Agile
Software Development (XP), Madrid.

Jeffries, R. (2010) ‘Essential XP: documentation’, February, available at
http://xprogramming.com/xpmag/expDocumentationInXP (accessed on 26 July 2011).

Kajko-Mattsson, M. (2008) ‘Problems in agile trenches’, in Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM ‘08),
ACM, New York, NY, USA, pp.111–119.

Karlström, D. and Runeson, P. (2005) ‘Combining agile methods with stage-gate project
management’, IEEE Software, Vol. 22, No. 3, pp.43–49.

Nerur, S., Mahapatra, R. and Mangalaraj, G. (2005) ‘Challenges of migrating to agile
methodologies’, Commun. ACM, May, Vol. 48, No. 5, pp.72–78.

Ruping, A. (2003) Agile Documentation: A Pattern Guide to Producing Lightweight Documents for
Software Projects, John Wiley, West Sussex, England.

Schwaber, K and Beedle, M. (2002) Agile Software Development with SCRUM, Prentice-Hall,
Upper Saddle River, NJ.

Sharp, H, Robinson, H and Petre, M. (2009) ‘The role of physical artefacts in agile software
development: two complementary perspectives’, Interacting with Computers, Special issue:
Enactive Interfaces, January, Vol. 21, Nos. 1–2, pp.108–116.

Sharp, H. and Robinson, H. (2004) ‘An ethnographic study of XP practice’, Empirical Software
Engineering, Vol. 9, No. 4, pp.353–375.

Tolfo, C. and Wazlawick, R.S. (2008) ‘The influence of organizational culture on the adoption of
extreme programming’, Journal of Systems and Software, Vol. 81, No. 11, pp.1955–1967.

