

 78 Int. J. Agile and Extreme Software Development, Vol. 1, No. 1, 2012

 Copyright © 2012 Inderscience Enterprises Ltd.

A review of the Getting Real software development
approach

Jari Sarja
Raahe Unit,
University of Oulu,
Oulu, FI-92100, Finland
Fax: +358-8-221-406
E-mail: jari.sarja@oulu.fi

Abstract: The small US software developing company called 37signals is a
significant phenomenon in many ways. The company has launched successful
commercial web applications. The company has its own unique way of
business thinking, and the people of the company do not have any growth
target.
 The people of the company also have their own way of thinking about the
software developing process. They have named it Getting Real. Getting Real is
not described as a developing method; rather, it is a philosophy or approach
behind the development activities. It has confluence with agile methods, but
unlike agile methods, in Getting Real the nature of the final product is also
strongly emphasised.
 The success of the company has proven that there is some effectiveness in
the Getting Real approach. Therefore, the aim of this study is to find out
whether the Getting Real approach can be supported by previous professional
literature and scientific research.

Keywords: software development; agile methods; small business; the Getting
Real approach.

Reference to this paper should be made as follows: Sarja, J. (2012) ‘A review
of the Getting Real software development approach’, Int. J. Agile and Extreme
Software Development, Vol. 1, No. 1, pp.78–94.

Biographical notes: Jari Sarja received his MSc degree (Information
Processing Science) from the University of Oulu, Finland. Currently, he is a
Project Researcher and a PhD student at the University of Oulu, in a side unit
of Raahe. His research is mainly focused on the area of software development:
agile methodologies, user experience and renewable energy. Before his
research career, he has worked a long period in the electronics and component
industry.

1 Introduction

This study identifies the professional and scientific evidence for the software
development philosophy or approach called Getting Real. The Getting Real approach was
created by an US company called 37signals. The key persons1 of the 37signals have

 A review of the Getting Real software development approach 79

created the Getting Real approach based on their own experience about developing
software applications and commercialising them successfully.

The key persons of the 37signals have written two books about their way of thinking
about software development (Getting Real)2 and creating a profitable business in the
internet environment (Rework). These two books, Getting Real (Fried and Heinemeier
Hansson, 2006) and Rework (Fried and Heinemeier Hansson, 2010), are important
empirical sources in this study. In Rework, the authors write the following about the
book: “This book isn’t based on academic theories. It’s based on our experience. We’ve
been in business for more than ten years. Along the way, we’ve seen two recessions, one
burst bubble, business-model shifts, and doom-and-gloom predictions come and go – and
we’ve remained profitable through it all” [Fried and Heinemeier Hansson, (2010), p.3].
The same principle applies to the Getting Real book.

We call Getting Real an approach rather than a method, technique or procedure.
Getting Real is not a described or documented software development method. It is a
range of principles based on the good practices of the 37signals company. The Getting
Real approach has confluence with agile methods.

What is noteworthy is that 37signals is a small bootstrapped company without any
expanding purpose. Regardless of that, they have gathered an active audience that follows
the company. Widespread newspapers and magazines, such as The New York Times,
Time, and The Wall Street Journal, have written stories about the key persons of the
company, and they have been crowd-pleasing speakers in different events. It can be said
that the outcome of the company is much wider than just the products they have
developed; it consist of a different way of processing development and business thinking,
and by-products. The company seems to enjoy a strong charisma of lonely riders, or even
a little bit rebellious pioneers.

Still two more issues exist, which make Getting Real an interesting research subject:
according to databases, the key persons of the company and their books have been cited a
few dozen times in academic researches and articles. Moreover, the Getting Real
approach has not been the subject of a research before in a comprehensive way.

From a practical point of view, this study may establish if the studied development
and business models – or part of them – are useful benchmarking targets to other business
owners. From a theoretical point of view, the purpose of this study is to find out if there
exists any support from professional literature and previous research for the Getting Real
software development approach. The main contribution is to connect the proven
successful small business development and business ways to a professional and scientific
context. The research question is: Can the Getting Real approach be supported by
professional literature and previous scientific research?

Since the Getting Real approach has not been researched before in a comprehensive
way and it has confluence with agile methods, the studied previous research material
mainly concerns agile methodologies. Abrahamsson et al. (2002, 2003) have observed
that agile methodologies have evoked a substantial amount of literature. The Agile
Manifesto (2011) is an important source in this research because it has been the starting
point for agile definitions, rules, principles, and it is cited in most literature concerning
agile methodologies. The influential persons behind the Agile Manifesto are also notable
book and article writers.

The research method in this study is conceptual analysis. Järvinen (2004) describes
the nature of conceptual analysis by setting the question: “What is a part of reality
according to a certain theory, model, or framework?” This study applies conceptual

 80 J. Sarja

analysis in the contrary manner; it asks what is a part of theory according to certain
practical activities? The data has been collected from many different sources: books,
magazines, the internet, professional literature, scientific papers, and video clips. The
collected data has been analysed using the systematic review and transcription methods.
Systematic review can be undertaken to examine the extent to which empirical evidence
supports theoretical hypotheses (Kitchenham, 2004). This is a very important aspect in
this study, since the main research activity is to compare the empirical material to
professional literature and previous researches. Transcription means converting the
source text to another format, for instance from spoken language to a written form.

The second section presents the previous studies on agile methodologies. An
important part of this section is the description of the Agile Manifesto. Since there exists
numerous agile methods, we have chosen four of them for general inspection: extreme
programming, scrum, crystal methods, and feature-driven development. The company
behind the Getting Real approach is also presented in the second section. Without
knowing the company behind the approach, it would be difficult to gain an understanding
of the approach.

In the third section, we describe six separate Getting Real software development
principles, and the conclusions of this study are summarised in the fourth section.

2 Literature review

Software business is a much newer business line compared to manufacturing business
lines. That is why traditional software development methods are based on the generic
development process (or new product development process, NPD), which is widely used
in various manufacturing business lines. Ulrich and Eppinger (2008, pp.13–15) describe
the generic development process as a six-step process, which consists of the planning,
concept development, system-level design, detail design, testing and refinement and
production ramp-up phases. The traditional software development processes (e.g.,
Waterfall, Stage-Gate) are described from a quality-related point of view. For improving
the quality of output from the process the focus has to be laid on the process itself by
removing the variances of the process. There are a quality checkpoint between every
working phase and the quality criteria must pass before moving to next working phase.

The most important reason for criticism of traditional software development
processes is the inflexibility for changes. Avison and Fitzgerald (1991), MacCormack
et al. (2001), Nandhakumar and Avison (1999), and Parnas and Clements (1986) share
the idea that traditional development methods are control-oriented, too mechanistic to use
in detail, too ideal and hypothetical, and not working in dynamic environment. This
provides a background for the emergence of agile software development methods.

The major idea behind agile methods is to speed up the development time and to
allow later changes to requirements. The number of different agile methods is existing
and therefore it is difficult to find a common definition for an agile method. Strode
(2006) has made a common definition for an agile method:

“An agile method is a software development methodology designed for the
management and support of iterative and incremental development of business
systems in environments where change is constant. Agile methods use software
development techniques that enhance teamwork in small empowered teams and
support active customer involvement. An agile method is designed to produce

 A review of the Getting Real software development approach 81

working software early, using communication, feedback, learning and frequent
meetings in preference to than modelling and documentation. Agile methods
adapt existing software development techniques to achieve these goals”.

The Agile Manifesto includes general rules and principles for agile methods. It was
signed by 17 persons influential in the agile field in 2001 [Agile Manifesto, 2011;
Cockburn, (2002), p.213; Lindstrom and Jeffries, 2004]. The people behind the Agile
Manifesto were individuals who had published separate software development methods
with similar characteristics. All these methods are based on best practice experiences and
evolutionary development practices focusing on early delivery and quality of software
(Strode, 2006).

The common rules in the Agile Manifesto are:
“Individuals and interactions over processes and tools.

Working software over comprehensive documentation.

Customer collaboration over contract negotiation.

Responding to change over following a plan.”

The Agile Manifesto further includes 12 explicit principles. These 12 principles of agile
software are:

• “Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

• Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity – the art of maximizing the amount of work not done – is essential.

• The best architectures, requirements, and designs emerge from self-organizing
teams.

• At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.” (Agile Manifesto, 2011)

The Agile Manifesto is an important source in this study because it has been a starting
point for agile definitions, and it is cited in most literature concerning agile

 82 J. Sarja

methodologies. Because there exist numerous of different agile methods, we have
selected four agile methods for closer inspection; extreme programming, scrum, crystal
methods, and feature driven development, which belong to agile method family.

2.1 The company behind the Getting Real approach

The background information of the company, 37signals, helps to deepen understanding of
the Getting Real approach, which is the research target. Without knowing the company
behind the approach, it would be difficult to gain an understanding of the approach. The
presented issues are those that appear time and again when the company is spoken about.
These issues are the big audience, the nature of the products and the unique business
models of the company.

37signals is followed increasingly, and it has a loyal audience. The company has built
the audience on purpose, as a kind of affordable marketing strategy. The company
launched a weblog titled Signal vs. Noise in 1999. According to Fried and Heinemeier
Hansson (2010, p.170) it had more than 100,000 daily readers in 2010. The fans and
audience mean a lot to the company. Having an audience means an affordable way to
reach a great number of people and potential customers, and to get direct feedback
without any information barriers. The big group of followers of the small company, the
audience, makes the company even more interesting from a research point of view.

The common factor of 37signals’ products is that they have all been planned to be
easy to use, opinionated, and relatively light and simple overall. Considering how
successful these products have been, it can be said that at least a part of customers like
simple products that do not require a lot of training before they can be used. After
decades’ evolution with increasing features and complexity, simplicity and minimalism
might be the forthcoming trend in the software business, perhaps in other business lines
as well.

The 37signals people summarise the idea of simplicity as the modus operandi of the
company as follows:

Our modus operandi:

“We believe software is too complex. Too many features, too many buttons,
too much to learn. Our products do less than the competition – intentionally.
We build products that work smarter, feel better, allow you to do things your
way, and are easier to use.” (Fried and Heinemeier Hansson, 2006)

37signals has a unique way of thinking about the running of a business. They have own
ideas for example about company funding, product pricing, as well as about every day
working methods.

3 The Getting Real approach

Getting Real is a kind of way of lateral business thinking. It is a set of principles that lead
the activities of a company. It is relatively difficult to define Getting Real, nor is it clearly
defined by the company. It is not a software development method since the development
process is not determined in it, and it also involves working and business methods.
Getting Real is based on the company’s experience about developing software
applications and commercialising them.

 A review of the Getting Real software development approach 83

After reviewing the source material, Getting Real is defined in this research as an
approach that has an existence identical with the philosophies behind software
development methods. It is presumable that the company people use ‘ultra-light agile
methods’ without any formal documentation as their development method.

There are six separate general principles in total:
“1 Getting Real is about skipping all the stuff that represents real (charts,

graphs, boxes, arrows, schematics, wireframes, etc.) and actually building
the real thing.

2 Getting Real is less. Less mass, less software, less features, less
paperwork, less of everything that’s not essential (and most of what you
think is essential actually isn’t).

3 Getting Real is staying small and being agile.

4 Getting Real starts with the interface, the real screens that people are going
to use. It begins with what the customer actually experiences and builds
backwards from there. This lets you get the interface right before you get
the software wrong.

5 Getting Real is about iterations and lowering the cost of change. Getting
Real is all about launching, tweaking, and constantly improving which
makes it a perfect approach for web-based software.

6 Getting Real delivers just what customers need and eliminates anything
they don’t.” (Fried and Heinemeier Hansson, 2006)

The key persons of the company define the benefits of the Getting Real approach as
follows:

“Getting Real delivers better results because it forces you to deal with the
actual problems you’re trying to solve instead of your ideas about those
problems. It forces you to deal with reality. Getting Real foregoes functional
specs and other transitory documentation in favour of building real screens. A
functional spec is make-believe, an illusion of agreement, while an actual web
page is reality. That’s what your customers are going to see and use. That’s
what matters. Getting Real gets you there faster. And that means you’re making
software decisions based on the real thing instead of abstract notions.”
(Fried and Heinemeier Hansson, 2006)

In order to clarify the analysis of the Getting Real theme, the principles are numbered
(1–6). Each principle is introduced in detail below and compared with professional
literature and scientific findings.

3.1 Getting Real – Principle 1

“Getting Real is about skipping all the stuff that represents real (charts, graphs,
boxes, arrows, schematics, wireframes, etc.) and actually building the real
thing.”

The first Getting Real principle is very similar to the common agile definitions regarding
documentation. Already the set of common general rules for all agile methods – the
Agile Manifesto – recommends focusing on well-functioning software instead of
documentation: “Working software over comprehensive documentation”. The Agile
Manifesto further includes 12 explicit principles. One of them is to focus on the

 84 J. Sarja

development of process measurement: “Working software is the primary measure of
progress”.

In her research, Strode (2006) introduces common properties of agile methods and
also mentions working software as the main product of development, together with
minimising documentation.

The key persons of the company criticise the need for comprehensive operational
documentation – not only documentation related to software developing. Besides
specifications, the key persons of the company call into question the need for roadmaps,
projections (Fried, 2008), business plans, five-year plans (Heinemeier Hansson, 2009),
financial plans, and strategies [Fried and Heinemeier Hansson, (2010), p.19]. Many
professionals share the thinking about minimising documentation. Torvalds, the creator
of Linux operating system, says about specifications: “A spec is close to useless. I have
never seen a spec that was both big enough to be useful and accurate. And I have seen
lots of total crap work that was based on specs. It’s the single worst way to write
software, because it by definition means that the software was written to match theory,
not reality” (Torvalds, 2005).

Palmer and Felsing (2002, pp.100–101) state that it is a painful process to generate
documents of source code and it increases the chances for updating. Cockburn (2002,
p.177) suggests to dispense with design documentation beyond whiteboard sketches. This
is in line with what the key persons argue; they recommend using paper sketches and real
HTML screens in the planning phase instead of documents (Fried and Heinemeier
Hansson, 2006).

Principle summary

The first Getting real principle closely resembles one of the four common rules for agile
methods, it is only defined in a somewhat more detailed and extensive way. We can
conclude that the first Getting Real principle is supported by professional literature and
previous scientific research.

3.2 Getting Real – Principle 2

“Getting real is less. Less mass, less software, less features, less paperwork,
less of everything that’s not essential (and most of what you think is essential
actually isn’t).”

Fried and Heinemeier Hansson (2006; 2010, pp.62–63) describe the second principle as
follows: “If you keep your mass low, you can quickly change anything: your entire
business model, product, feature set, and/or marketing message. You can make mistakes
and fix them quickly. You can change your priorities, product mix, or focus”.

One of the principles in the Agile Manifesto can be compared to this second
principle: “Simplicity – the art of maximising the amount of work not done – is
essential”. The key persons of the company emphasise to do less at every level; the code
level, feature level, daily routine level as well as company strategy level.

All characteristics of the agile methods, as well as those of the Getting Real approach,
aim at flexible changes during the developing process. Appleton (2005) has summarised
this idea as follows: “There is no code that is more flexible than no code!” He argues the
good software design is not knowing what to put into code but it is knowing what to
leave out.

 A review of the Getting Real software development approach 85

The key persons of the company see many different advantages in reducing codes.
Less software is easier to manage, it reduces the code-base, which means less
maintenance work, it lowers and speeds up the cost of change, and it causes fewer bugs
and reduces the need of support. “For every feature that makes it into your app, ask
yourself: Is there a way this can be added that won’t require as much software? Write just
the code you need and no more. Your app will be leaner and healthier as a result” (Fried
and Heinemeier Hansson, 2006).

Wild (2008) recommends writing less code by justifying and prioritising every
feature and minimising useful feature sets. It is a received principle that software design
should be kept as simple as possible. For instance, Appleton (2005), Fernandez (2008),
Lindstrom and Jeffries (2004), Müller and Tichy (2001), Nielsen and Mack (1994) and
Wild (2008) share this principle with the 37signals people. According to the key persons,
feature evaluation should always be done by thinking what is really needed, and leaving
out the rest.

The ‘less mass’ philosophy seems to present even a competitive edge to the company.
“It’s all part of how we differentiate ourselves from competitors; instead of trying to
build products that do more, we build products that do less” (Fried and Heinemeier
Hansson, 2006). The key persons of the company highlight the minimalist character in
every source when they speak about the products (e.g., Fried and Heinemeier Hansson,
2006, 2010; Fried, 2008; Heinemeier Hansson, 2009; Park, 2008, etc).

It is difficult to prove scientifically whether there is any correlation between the
number of features and the success of the product since there is not very much previous
research available on this subject. There are also many variables, e.g., different
researched customer segments [the customer segments according to Moore (1991):
innovators, visionaries, pragmatists, conservatives, sceptics]. But it can be concluded that
the fewer features a product contains, the simpler it is to use. Simple-to-use products
always have loyal users. The company has proved it with more than three million users
[Fried and Heinemeier Hansson, (2010), p.3]. As mentioned, minimalism might be a
growing trend also in other business lines, such as consumer electronics or catering
business. The key persons refer to Gordon Ramsey – a three-Michelin-star chef – who
recommends to have only around ten dishes on a menu and to focus on them [Fried and
Heinemeier Hansson, (2010), p.83].

Principle summary

The second Getting Real principle is very general and extensive. It recommends doing
things in a simple and light way at various levels. The phrase ‘less mass’ covers
practically all functions of a software company, including the daily-level job, planning,
documentation, and product design activities. The phrases ‘less paperwork’ are
more descriptive and belong under the ‘less mass’ umbrella. The general less mass
thinking – including all sub-thoughts – is in line with the Agile Manifesto principle:
“Simplicity – the art of maximising the amount of work not done – is essential”.

The idea of ‘less software’ and keeping the code as simple as possible is clearly in
accordance with the agile approaches and is shared for instance by Appleton (2005),
Fernandez (2008), Lindstrom and Jeffries (2004), Müller and Tichy (2001), Nielsen and
Mack (1994) and Wild (2008).

The ‘less feature’ thinking is very close to the ‘less software’ thinking since in most
cases less software is the result of reducing the number of features. It is not possible to

 86 J. Sarja

reach a conclusion concerning the correlation between the number of features and the
success of the product because there are so many different kinds of customer segments. It
is certain that innovators and visionaries want more features than mainstream customers.
On the other hand, it can be seen that many customers want products that are easy to use,
which in many cases means fewer features. The ‘less paperwork’ thinking is clearly in
line with the agile methodologies and is defined in the Agile Manifesto as one of the four
common rules: “Working software over comprehensive documentation”.

We can conclude that the second Getting Real principle is supported by professional
literature and scientific research.

3.3 Getting Real – Principle 3

“Getting Real is staying small and being agile.”

This is the first instance in which the key persons mention the concept of agility.
However, they do not seem to refer directly to agile methodologies; rather, agility is a
consequence of the small size of the company. “All the cash, all the marketing, all the
people in the world can’t buy the agility you get from being small” (Fried and
Heinemeier Hansson, 2006).

This is also the first Getting Real principle which does not have a straightforward
connection with the Agile Manifesto rules or principles; in the Agile Manifesto itself,
agile methodologies are not linked only with small teams. However, some key persons
behind the Agile Manifesto (e.g., Beck, 1999; Lindstrom and Jeffries, 2004) argue that
particular agile methods are meant for small teams. Some researchers (e.g., Müller and
Tichy, 2001; Rising and Janoff 2000; Strode, 2006) also share the idea of the small team
size.

The key persons of the company do not speak about the size of the developing team
but the size of the whole company. They point out that a small business can be profitable
and that growth itself should not be a main target of a company [Fried and Heinemeier
Hansson, (2010), pp.22–23]. They emphasise four main reasons why it is favourable to
keep a company small:

• the possibility of cheap and fast changes

• resource limitations force one to do things faster and cheaper

• fewer formalities, less bureaucracy, and more freedom

• nimbler organisation.

Power and Reid (2005) have researched the flexibility and performance of small firms,
and they have identified the main factors that influence the performance of long-lived
small businesses positively. Two out of the four factors support this principle. A small
firm must be aware of the drivers of change, and it must be ready for quick changes.

Principle summary

The Agile Manifesto does not commit itself to the size of a company, but one of its main
ideas is to react fast to requirement changes even in a late phase of the developing
process. The fourth common rule of the Agile Manifesto is “Responding to change over
following a plan”, and one of the 12 explicit principles is: “Welcome changing

 A review of the Getting Real software development approach 87

requirements, even late in development. Agile processes harness change for the
customer’s competitive advantage”. Agile behaviour and the possibility of reacting fast
are a consequence of the small size of a team or company. It is an established fact that
small companies are more agile and faster than bigger ones (e.g., Power and Reid, 2005).

We can conclude that the third Getting Real principle is supported by previous
scientific research.

3.4 Getting Real – Principle 4

“Getting Real starts with the interface, the real screens that people are going to
use. It begins with what the customer actually experiences and builds
backwards from there. This lets you get the interface right before you get the
software wrong.”

The order of building software is not addressed in the Agile Manifesto. One rule is
loosely similar and closest to this principle; it is the one that was already introduced with
the first principle – “Working software over comprehensive documentation”. The key
persons of the company emphasise in many sources that it is important to start the
building of software directly with real things without formal planning and documentation
(e.g., Fried and Heinemeier Hansson, 2006; Fried, 2008), and the fourth principle states
that the starting point should be the user interface.

The key persons also equate the user interface to a product. They state the user
interface is a product from user point of view (Fried and Heinemeier Hansson, 2006;
Singer, 2008). The key persons of the company argue for starting the interface design
first because it is relatively light and easy to change before the programming has started.
They also argue that the user interface gives an impression of the application to the
designers.

Constantine and Lockwood (2002) note that the web page itself is a user interface.
They also claim that the success of the user interface design determines the success of
web applications. Nielsen and Mack (1994) have estimated that billions of dollars have
been lost in internet sales because of usability problems. It is hard to find support for
starting the design from the user interface, or for the opposite viewpoint. In all likelihood,
the issue has not been researched extensively. However, Parnas (1969) notes in his paper
that the user interface should be designed first, and thus share the viewpoint of the key
persons.

The 37signals people have focused strongly on user interface design, also at the more
detailed level. They mention the same principles as with whole products; the user
interface must be easy to use, opinionated and aesthetic. They emphasise the meaning of
blank slate design, and the form of context and language, e.g., buttons, links, search
functions, words and sentences, etc. [Fried and Heinemeier Hansson, 2006; Singer, 2008;
see also Nielsen and Mack, (1994), pp.279–293]. The language of the user interface has
also been studied before. De Souza (1993) presents the semiotic engineering approach for
user interface designers, which has similarities with this Getting Real principle.

User interfaces have been researched already before the internet became a common
phenomenon. Grudin (1989) had already concluded that context is more important than
consistency, against previous studies. He also states that knowing the users and their
tasks can be a cutting edge for the designers. Grudin and Gentner (1990) also emphasise
the difference between the engineer’s and user perspectives when designing the user
interface.

 88 J. Sarja

Principle summary

The fourth Getting Real principle is ambiguous. The first point suggests to start the
design of an application from the user interface and to design the real screens first. This
seems to be based on the best practices of the company, and it is certainly a good
observation. It is maybe stating the obvious for software designers, or it has not been
researched a lot. In any case, it is hard to find support from professional literature and
research for this point.

The second point – the user experience – is loosely connected with this principle.
However, the company has focused on and described user interface design from the
user’s point of view, in other words the user’s experience, so deeply that it is valuable to
summarise the point. All aspects the 37signals people present, the form of context and
design including the language of user interface, are supported to some extent by previous
research. A noteworthy matter is that most of the relevant studies are relatively old, from
the time before the internet became common. The newer user interface research mostly
focuses on more complicated user interfaces. However, it can be concluded that the same
principles are valid with simple and minimalist web applications.

We can conclude that the fourth Getting Real principle is partly supported by
professional literature and scientific research.

3.5 Getting Real – Principle 5

“Getting Real is about iterations and lowering the cost of change. Getting Real
is all about launching, tweaking, and constantly improving which makes it a
perfect approach for web-based software.”

The fifth Getting Real principle is not directly supported by the Agile Manifesto rules or
principles. The Agile Manifesto addresses the possibility of change, but from a different
point of view. The Agile Manifesto rule and principle “Responding to change over
following a plan” and “Welcome changing requirements, even late in development”, refer
to one of the main characteristics of agile methods – flexibility for changes, but not for
the cost point of view. However, it is self-evident that lowering the cost of change is one
important motive behind the establishment of agile methodologies.

The key persons of the company emphasise the change possibility from the cost point
of view. The cost thinking is in line with their experience of limited development
resources and the minimalist design principles.

Kunz et al. (2008) summarise the relationship between the cost of change and agile
methodologies saying agile software development methods try to decrease the cost of
change and therewith reduce the overall development costs. The different cost of change
in agile software development in comparison with traditional software development
according to the project progress as suggested by Beck (1999) is shown in Figure 1.

There is a strong connection between iterations and agile methodologies. Miller
(2001) has defined nine characteristics which make a software development process
agile. One of those characteristics is iteration; a short cycle which is repeated many times
for refining the deliverables and completing activities. Kunz et al. (2008) emphasise the
same aspect of extreme programming.

 A review of the Getting Real software development approach 89

Figure 1 The cost of change compared to the development method

Source: Beck (1999)

The key persons of the company have described the iterative process as follows:
“Instead of banking on getting everything right up front, the iterative process
lets you continue to make informed decisions as you go along. Plus, you’ll get
an active app up and running quicker since you’re not striving for perfection
right out the gate. The result is real feedback and real guidance on what
requires your attention.” (Fried and Heinemeier Hansson, 2006)

They do not mention agile methodologies but speak about the exactly same iteration
characteristic as the researchers and co-founders of agile methodologies.

Principle summary

The Agile Manifesto strongly supports flexibility for changes. It does not mention the
cost of change viewpoint. However, lowering the cost of change has been recognised as
one important motive behind the establishment of agile methodologies, and it is an
important characteristic of agile methodologies in general. In the fifth Getting Real
principle, iteration is regarded as a method of implementing the lowering of the cost of
change. It is totally in line with the characteristics of agile methodologies (see e.g.,
Miller, 2001; Strode, 2006). A noteworthy matter is that also the second Getting Real
principle introduces many other methods of implementing the lowering of the cost of
change. It can be said that to lower the cost of change is a consequence of iteration, but
also of other methods of implementation introduced with the second principle.

We can conclude that the fifth Getting Real principle is supported by professional
literature and scientific research.

3.6 Getting Real – Principle 6

“Getting Real delivers just what customers need and eliminates anything they
don’t.”

 90 J. Sarja

The 37signals people have emphasised the importance of eliminating extra features in
many sources, as has been discussed before. They have turned it into a competitive
advantage, calling it ‘underdoing the competition’. The content of the sixth Getting Real
principle resembles the previously introduced ‘less software-thinking’. Less software
means less features, less code, and less waste. All these methods and mindsets have been
introduced previously in this study. Therefore, we examine one small new viewpoint in
this chapter, the waste eliminating.

Wild (2008) has defined principles of lean thinking. One of the seven principles is
eliminate waste. Wild defines waste as follows:

• anything that does not create value for the customer

• the customer would be equally happy with the software without it.

He explains the prime directive of lean thinking:

• create value for the customer

• improve the value stream by removing non-value-adding activities.

The cost of complexity as suggested by Wild is illustrated in Figure 2. The curve titled
complexity simply means that more features cause more waste. According to Wild
complexity is the biggest source of waste.

Figure 2 The cost of complexity

Source: Wild (2008)

Wild has found that only 7% of features and functions are always used in typical systems.
13% of them are used often, 16% sometimes, 19% rarely, and 45% never. The
percentages are illustrated in Figure 3. It means that only 20% of features and functions
are used always or at least often. This means that, roughly speaking, 80% of features and
functions are against lean thinking and are waste. Avoiding these 80% could make a lot

 A review of the Getting Real software development approach 91

of savings in the development and maintaining phases. This theory is totally in line with
the sixth Getting Real principle and supports it.

Figure 3 The features and functions used in a typical system

Source: Wild (2008)

Principle summary

It can be concluded that the sixth Getting Real principle is relatively universal by nature.
It is a higher-level principle compared to the other Getting Real principles, and it
summarises many other principles and mindsets of the company.

The sixth Getting Real principle is also in line with the Agile Manifesto principle:
“Simplicity – the art of maximising the amount of work not done – is essential”. It is also
supported by Nielsen and Mack’s (1994) usability heuristics (aesthetic and minimalist
design), as well as by Wild’s (2008) principles of lean thinking (eliminate waste).

We can conclude that the sixth Getting Real principle is supported by previous
scientific research.

4 Conclusions and discussion

Considering the size of the researched company, the company and the Getting Real
approach are relatively well known, especially in its home country and by special interest
groups. The key persons of the company and their books have been cited a few dozen
times in academic researches and articles. The Getting Real approach has not been a
research subject before in a comprehensive way, so it has been interesting to connect the
provenly successful small business (or small organisation) development and business
ways to a scientific context.

Following the investigation of the Getting Real principles, it can be concluded that
many principles include a similar message. Perhaps, the authors have meant a somewhat
different viewpoint between the principles. However, the main message of the principles
could be summarised as follows: The application should have as few features as possible,
and the whole development process should focus on building the real things directly
instead of deep planning and documentation. That, and being small, make late changes

 92 J. Sarja

possible, and also keep the cost of changes reasonable. For instance, the messages of the
first and fourth principles are very similar to one another, as well as the messages of the
second and sixth principles.

The Getting Real principles resemble the Agile Manifesto rules and principles, but
the viewpoint is somewhat different. The Getting Real principles deal with the nature of
an application, which limits its use only to light products, such as web applications. The
rules and principles of agile methodologies also address other viewpoints, such as
individuals, teams, customers, collaboration, and reviews. However, the agile rules and
principles do not commit to the nature of the final product. It would be interesting to
know if the 37signals people have thought about the agile rules when defining the Getting
Real principles. We tried to find that out with a short personal e-mail interview, but
Fried’s answer was a polite refusal explained by the lack of time (personal e-mail,
24.5.2011).

The support from previous research for the Getting Real principles is introduced in
Table 1. It shows that the Getting Real principles, which reportedly are based on the best
practices of the researched company, are mostly supported by Agile Manifesto, experts
and specialists, professional literature, and previous scientific research.
Table 1 Professional and scientific support for the Getting Real principles

Support from
Getting Real
principle Agile manifesto/Agile methodologies Professional literature

and scientific papers
1 x x
2 x x
3 Partly x
4 Partly Partly
5 x x
6 x x

We can conclude that four out of the six Getting Real principles are supported by the
Agile Manifesto. These four principles are clearly supported by other professional
literature and researches as well. One out of the six Getting Real principles is not directly
supported by the Agile Manifesto, but there are other professional literature and
researches which support it. Finally, one out of the six Getting Real principles is only
partly supported by the Agile Manifesto and other literature and researches.

Consequently, we can conclude that there are not so many new aspects in the Getting
Real approach. The ideas included in the principles have existed already before in some
form. How is it possible that so much attention have given to the Getting Real approach?
We think there are many reasons. The company has proved in practice the effectiveness
of the Getting Real approach by developing and commercialising successful products.
The success of the small company has provided the people of the company with a strong
charisma. The charismatic entrepreneurs have been very open and shared their knowledge
with their growing audience. The books written by the key persons of the company
[Getting Real (Fried and Heinemeier Hansson, 2006) and Rework (Fried and Heinemeier
Hansson, 2010)] resemble the company’s products; they are very light and easy to read
and use ordinary language instead of jargon. We think the manner of representation has
helped people to appreciate the thoughts of the 37signals people.

 A review of the Getting Real software development approach 93

Even though there are not so many new aspects in the Getting Real principles, it can
be said that the small company has picked up the right principles from all possible
business and development rules and tenets for strengthening their activities. From a
practical point of view, we can conclude that the researched company might be a good
benchmarking case for other small business owners as well. From a theoretical point of
view, we can conclude that there are no conflicts between professional literature and
previous research, and the Getting Real approach.

Acknowledgements

Acknowledgements to Professor Samuli Saukkonen for the support and valuable
discussions during the study.

References
Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002) Agile Software Development

Methods. Review and Analysis, p.478, VTT Publications, Otamedia Oy, Espoo.
Abrahamsson, P., Warsta, J., Siponen, M. and Ronkainen, J. (2003) ‘New directions on agile

methods: a comparative analysis’, Proceedings of the International Conference on Software
Engineering, 3–5 May, Portland, pp.244–254.

Agile Manifesto (2011) ‘Manifesto for agile software development’, available at
http://agilemanifesto.org/ (accessed on 13 April 2011).

Appleton, B. (2005) ‘Brad Appleton’s ACME blog’, available at http://bradapp.blogspot.com/
2005/02/there-is-no-code-that-is-more-flexible.html (accessed on 11 May 2011).

Avison, D.E. and Fitzgerald, G. (1991) Information Systems Development, Blackwell Scientific
Publications, Oxford.

Beck, K. (1999) Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading,
MA.

Cockburn, A. (2002) Agile Software Development, Addison-Wesley, Boston.
Constantine, L.L. and Lockwood, L.A.D. (2002) ‘Usage-centered engineering for web

applications’, IEEE Distributed Systems Online, Vol. 19, No. 2, pp.42–50.
De Souza, C.S. (1993) ‘The semiotic engineering of user interface languages’, International

Journal of Man Machine Studies, Vol. 39, pp.753–773.
Fernandez, O. (2008) The Rails Way, Addison-Wesley, Upper Saddle River, NJ.
Fried, J. (2008) ‘Jason Fried of 37signals at business of software 2008’, available at

http://37signals.com/speaks (accessed on 17 March 2011).
Fried, J. and Heinemeier Hansson, D. (2006) Getting Real, Chicago, available at

http://gettingreal.37signals.com/toc.php (accessed on 10 January 2011).
Fried, J. and Heinemeier Hansson, D. (2010) Rework, Vermillion, London.
Grudin, J. (1989) ‘The case against user interface consistency’, Communications of the ACM,

Vol. 32, No. 10, pp.1164–1173.
Grudin, J. and Gentner, D.R. (1990) ‘Why good engineers (sometimes) create bad interfaces’,

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:
Empowering People, pp.277–282.

Heinemeier Hansson, D. (2009) ‘David Heinemeier Hansson of 37signals at FOWA Dublin 2009’,
available at http://37signals.com/speaks (accessed on 5 May 2011).

Järvinen, P. (2004) On Research Methods, Opinpajan kirja, Tampere.

 94 J. Sarja

Kitchenham, B. (2004) ‘Procedures for performing systematic reviews’, Keele University
Technical report.

Kunz, M., Dumke, R. and Schmietendorf, A. (2008) ‘How to measure agile software development’,
Lecture Notes in Computer Science, Vol. 4895, pp.95–101.

Lindstrom, L. and Jeffries, R. (2004) ‘Extreme programming and agile software development
methodologies’, Information Systems Management, Vol. 21, No. 3, pp.41–52.

MacCormack, A., Verganti, R. and Iansiti, M. (2001) ‘Developing products on ‘internet time’:
the anatomy of a flexible development process’, Management Science, Vol. 47, No. 1,
pp.133–150.

Miller, G.G. (2001) ‘The characteristics of agile software processes’, Proceedings of the 39th
International Conference and Exhibition on Technology of Object-Oriented Languages and
Systems, pp.385–387.

Moore, G.A. (1991) Crossing the Chasm, HarperCollins Publishers, New York.
Müller, M. and Tichy, W. (2001) ‘Case study: extreme programming in a university environment’,

Proceedings of the 23rd International Conference on Software Engineering, pp.537–544.
Nandhakumar, J. and Avison, D.E. (1999) ‘The fiction of methodological development: a field

study of information systems development’, Information Technology & People, Vol. 12,
No. 2, pp.176–191.

Nielsen, J. and Mack, R.L. (1994) Usability Inspection Methods, John Wiley & Sons, New York.
Palmer, S.R. and Felsing, J.M. (2002) A Practical Guide to Feature-Driven Development,

Prentice-Hall, Upper Saddle River.
Park, A. (2008) ‘The brash boys at 37signals will tell you: keep it simple, stupid’, Wired Magazine,

16 March 2008, available at http://www.wired.com/techbiz/media/magazine/16-03/mf_
signals?currentPage=1 (accessed on 23 May 2011).

Parnas, D.L. (1969) ‘On the use of transition diagrams in the design of a user interface for an
interactive computer system’, Proceedings of the 1969 24th National Conference, pp.379–385.

Parnas, D.L. and Clements, P.C. (1986) ‘A rational design process: how and why to fake it’, IEEE
Transactions on Software Engineering, Vol. SE-12, No. 2, pp.251–257.

Power, B. and Reid, G.C. (2005) ‘Flexibility, firm-specific turbulence and the performance of the
long-lived small firm’, Review of Industrial Organization, Vol. 26, No. 4, pp.415–443.

Rising, L. and Janoff, N.S. (2000) ‘The Scrum software development process for small teams’,
IEEE Software, Vol. 17, No. 4, pp.26–32.

Singer, R. (2008) Ryan Singer of 37signals at FOWD New York 2008, available at
http://37signals.com/speaks (accessed on 6 March 2011).

Strode, D. (2006) ‘Agile methods: a comparative analysis’, Proceedings of the 19th Annual
Conference of the National Advisory Committee on Computing Qualifications, pp.257–264.

Torvalds, L. (2005) Linux: Linus On Specifications, available at http://kerneltrap.org/node/5725
(accessed on 5 May 2011).

Ulrich, T. and Eppinger, S.D. (2008) Product Design and Development, The McGraw-Hill
Companies, Singapore.

Wild, W. (2008) Agile Software-Development & Tools, available at http://www.softnet2008.info/
download/Wild.pdf (accessed on 12 May 2011).

Notes
1 The definition ‘key person’ refers to Jason Fried and/or David Heinemeier Hansson, who are

the partners of 37signals and co-writers of the books Getting Real and Rework. The definition
is used when it is not known which partner/co-writer to cite, or when citing both.

2 The internet version of the book Getting Real does not have page numbering. Citations to this
book are in the form ‘(Fried and Heinemeier Hansson, 2006)’.

