Predicting acoustic transmission loss through laminated glass with air and porous layers
by Saurabh Suresh; Teik C. Lim; Jeff Kastner
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 8, No. 3, 2012

Abstract: This study analyses the sound transmission characteristic of various laminated glass designs with application to motor vehicles. The porous interlayer in the laminated glass is filled with polyvinyl butyral (PVB) that serves as an acoustic damper. To model the physics behind the sound transmission losses of the fluid, solid and porous layers, acoustic noise transfer matrices are used to relate the dynamic characteristics of two interlayer points in the laminated glass. The porous model includes the effect of the variation in porosity on Poisson's ratio involving the wave number as well as the bulk modulus. Furthermore, an interface matrix is introduced, which defines the dynamic interaction at the interface of every layer. The addition of a fluid layer, like air, yields an interesting phenomenon of two coincidence dips. Finally, a set of parametric studies are performed to observe the transmission loss characteristic due to changes in glass thickness and porous layer.

Online publication date: Fri, 29-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com