Parameter analysis and design framework for magnetic adhesion wall climbing wheeled robot Online publication date: Mon, 23-Apr-2012
by Salman Hussain; Tariq Sattar; Ener Salinas
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 11, No. 1/2, 2012
Abstract: Some robots need to climb ferromagnetic walls for performing important inspections and evaluations of the material properties of these walls. This paper aims to establish a design framework for magnetically adhering wheeled robots having magnets attached to the base of the robot. The different design parameters influencing the magnetic adhesion include the geometry of the flux concentrator, the variation of the air gap on adhesion and climbing performance in addition to various types of materials for magnetic flux concentration. These parameters shaping adhesion behaviour are simulated numerically using magnetostatic analysis in ANSYS Finite Elements Method (FEM) software. The results are evaluated and a set of rules and procedures are created as a framework that will enable a more efficient design and construction of this type of robots.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com