Orchestrating computational algebra components into a high-performance parallel system
by A.D. Al Zain; P.W. Trinder; K. Hammond
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 7, No. 2, 2012

Abstract: This paper demonstrates that it is possible to obtain good, scalable parallel performance by coordinating multiple instances of unaltered sequential computational algebra systems in order to deliver a single parallel system. The paper presents the first substantial parallel performance results for SymGrid-Par, a system that orchestrates computational algebra components into a high-performance parallel application. We show that SymGrid-Par is capable of exploiting different parallel/multicore architectures without any change to the computational algebra component. Ultimately, our intention is to extend our system so that it is capable of orchestrating heterogeneous computations across a high-performance computational grid.

Online publication date: Sat, 30-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com