Exergy analysis of gas turbine – solid oxide fuel cell-based combined cycle power plant
by M. Sreeramulu; A.V.S.S.K.S. Gupta; T. Srinivas
International Journal of Energy Technology and Policy (IJETP), Vol. 7, No. 5/6, 2011

Abstract: Fuel cell technology is one of the promising systems for cleaner and competitive alternate power generation systems. When the high temperature fuel cells like solid oxide fuel cell and molten carbon fuel cell are integrated with the gas turbines, the total thermal efficiency of the combined cycle can be obtained greater than 60%. In the present work, thermodynamic analysis of SOFC-GT combined system (3MW) has been carried out for the fuel methane to evaluate the energy efficiency, exergy efficiency and exergy destruction of each component and compared with other fuels like coal gas and ethanol. The effect of compression ratio, turbine inlet temperature and ambient temperature of air on the performance of the system has been analysed. The outcome of the system modelling reveals that SOFC and combustion chamber are the main sources of exergy destruction. At the optimum compression ratio 9 and at the turbine inlet temperature 1,250 K, the total thermal efficiency and the exergy efficiency are found to be 63.3% and 60.85% respectively.

Online publication date: Thu, 26-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Energy Technology and Policy (IJETP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com