MDG-SAT: an automated methodology for efficient safety checking
by Khaza Anuarul Hoque; Otmane Ait Mohamed; Sa'ed Abed; Mounir Boukadoum
International Journal of Critical Computer-Based Systems (IJCCBS), Vol. 3, No. 1/2, 2012

Abstract: Multiway decision graph (MDG) is a canonical representation of a subset of many-sorted first-order logic. It generalises the logic of equality with abstract types and uninterpreted function symbols. The area of satisfiability (SAT) has been the subject of intensive research in recent years, with significant theoretical and practical contributions. In this paper, we propose a new design verification tool integrating MDG and SAT, to check the safety of a design by invariant checking. Using MDG to encode the set of states provides a powerful mean of abstraction. We use a SAT solver to search for paths of reachable states violating the property under certain encoding constraints. In addition, we introduce an automated conversion-verification methodology to convert a directed formula (DF) into a conjunctive normal form (CNF) formula that can be fed to a SAT solver. The formal verification of this conversion is conducted within the HOL theorem prover. Finally, we present experimental results and a case study to show the correctness and the efficiency of our proposed methodology.

Online publication date: Sat, 16-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Computer-Based Systems (IJCCBS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com