Noisy localisation on the sphere
by Changbin Yu; Baoqi Huang; Hongyi Chee; Brian D.O. Anderson
International Journal of Intelligent Defence Support Systems (IJIDSS), Vol. 4, No. 4, 2011

Abstract: Localisation is a vital problem in a multitude of research fields, such as navigation, tracking, sensor networks and so on. In previous work, the problem is considered in the plane or in three-dimensional space. This work deals with the problem of distance-based localisation on the surface of the earth when the points lie in a two-dimensional manifold. The challenge lies with finding an appropriate technique to cope with noisy measurements when the conventional formulation for a planar model cannot be used. To this end, we adopt a tool recently applied to the planar model, the Cayley-Menger matrix. Simulation results show that the proposed method is effective and robust to noise. We also quantify the effect of a planar approximation.

Online publication date: Sat, 28-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Defence Support Systems (IJIDSS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com