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1 Introduction 

Relevant to understanding a social network is whether its graphical form is similar to that 
of another network. For example, will a graph describing scientific collaborations be 
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similar to the graph of an e-mail network engaged in the development of Linux? 
Alternatively, we may have a theory of the graphical form of optimal organisational 
structure, and want to know how much an actual example deviates from this ideal. In 
both cases, we need to be able to judge graph similarity. 

Consider two graphs G and H that are identical, except for a single edge absent in H. 
A natural way to think about judging their similarity would be to count the minimum 
number of changes that would have to be made to transform one graph into the other. 
This count is called the edit-distance and allows us to judge that a third graph F, missing 
two edges relative to G, is less similar to G than H is to G. Unfortunately, the problems 
with edit-distance are twofold. First, there are many possible kinds of edit operations, 
including edge rotation, edge addition and subtraction, and vertex addition and 
subtraction, and it is not clear how to weight these changes against one another. 
Additionally, to judge that an operation has in fact transformed one graph into the other 
involves solving the graph isomorphism problem, which has no known general 
polynomial time solution. It is clear that we will have to accept some level of 
approximation in any similarity measure for the sake of tractability. 

We first briefly review previous attempts to overcome these problems and then 
present our own solution. We introduce a novel representation for graphs, which makes 
use of the distribution of structural features of their constituent sub-graphs, which we call 
a graph’s fine structure. Using this representation we define graph similarity to be the 
earth mover’s distance between these feature distributions and demonstrate that this 
abstraction yields sensible results under random graph permutation. We then go on to use 
this similarity measure to perform hierarchical clustering on a selection of networks, 
including social, neural, and semantic networks. Finally, we discuss the influence of a 
graph’s generative process on graph similarity and discuss uses of our measure in 
investigating these processes. 

2 Previous work 

Some researchers have approached graph similarity using spectral analysis, where  
edit-distance is approximated by the difference in the spectrum of Eigenvalues between 
the laplacians of graph adjacency matrices (Peabody, 2002; McWherter, 2001). This was 
demonstrated in Peabody (2002) by cloning graphs, randomly permuting their copies, and 
showing that their spectral distance increases as a function of the amount of permutation. 
This technique has two weaknesses however, the first being the existence of isospectral 
graphs, which share Eigenvalues despite having quite different topological structure and 
therefore can erroneously be judged similar. The second is the difficulty of interpreting 
graph spectra as an abstraction of social phenomena. Ideally for the social network 
domain, we would like to design a similarity measure that judges graph similarity based 
on some set of features we suspect to be socially relevant. 

Other related research includes p* models, graph kernels, and motif analysis. p* 
approaches to social network analysis typically attempt to fit the parameters of a class of 
exponential density functions, describing the probabilities of structures occurring within a 
graph, to empirically observed social graphs. These parameters can then be compared 
across graphs to judge their structural similarity (Anderson et al., 1999). Graph kernels 
are a broad class of functions that map graph features to points in high dimensional inner 
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product spaces, making them amenable to classification techniques such as SVMs 
(Shervashidze and Borgwardt, 2009; Borgwardt, 2007). 

Motif analysis (Milo et al., 2002; Stoica and Prieur, 2009) computes the frequency of 
the occurrence of small sub-graphs, called motifs, and uses this analysis to judge the 
significance of the appearance of these motifs by comparison with their frequency in 
Erdős-Rényi random graphs. This work implicitly defines a similarity measure based on a 
comparison of motif frequencies. A key question for this approach is what is the right 
choice of motifs? If motifs are too large then the graph isomorphism problem arises 
again. If they are too small and numerous, then the high dimensionality of the feature 
space becomes unwieldy. What justifies a particular choice? Additionally, could some 
motifs be collapsed together into a single class of graphs, such as complete graphs or 
other special forms for the purposes of judging similarity? These considerations are part 
of the motivation for the LBD graph representation that we present in the next section. 

3 The LBD representation 

There are many possible choices for features that can abstractly represent the structure of 
a graph (Milo et al., 2002; Newman, 2003; Read and Wilson, 1998). For this work, we 
have chosen a triple of features, first introduced in Richards and Wormald (2009), that 
has some social relevance. These features are characterised as leadership (L), bonding 
(B), and diversity (D). We will use LBD triples to represent undirected graphs as points in 
LBD space. 

3.1 Leadership 

Leadership, introduced in Freeman (1978), is a measure of the extent to which the edge 
connectivity of a graph is dominated by a single vertex. It is given by equation (1), in 
which n is number of graph vertices and di is the degree of vertex i. It is a normalised 
difference between the degree of the highest degree vertex and each other vertex in the 
graph. Leadership is maximal (i.e., 1) in a star graph (one vertex of degree n – 1 with all 
other vertices of degree 1) and zero for regular graphs with all vertices having the same 
degree (e.g., a complete graph or a ring). In a social network, a high leadership indicates 
that a small number of people are connected to a much larger proportion of others than 
the average group member, whereas a low leadership indicates that most people are 
equally connected. 

( )1 max

( 2)( 1)

n
i id d

L
n n
= −

=
− −

∑  (1) 

3.2 Bonding 

Bonding, given by equation (2), measures triadic closure in a graph. It is the ratio of 
length three paths in a graph to length two paths and is one of several measures called 
clustering coefficient in the literature (Wasserman and Faust, 1994). The motivation 
behind bonding is that this ratio measures the proportion of triadic closures that actually 
exist in a graph relative to the number that could exist, but are missing an edge. Bonding 
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is maximal (i.e., 1) for a complete graph, but zero for any graph with no triangle  
sub-graphs (e.g., trees or bipartite graphs). In a social network, a high bonding means that 
if two people are linked to a third person, then it is likely that they are also linked to one 
another. Where edges represent friendship for example, a high bonding means that if two 
people are mutually friends with a third person, then they are also likely to be friends 
with one another. 

6 (#  triangles)
# length_two_paths

B ×
=  (2) 

3.3 Diversity 

Diversity, given by equation (3), is a measure based on the number of edges in a graph 
whose end vertices are not adjacent, and hence are disjoint. We call such end vertices 
disjoint dipoles. The maximum number of disjoint dipoles for any graph of order n is the 
maximum number of four cycles in a graph of the same order. This maximal count is 
used as a normalising factor. The square root of the ratio scales the measure into a range 
similar to L and B (see Richards and Wormald, 2009, for details.) D = 0 for n < 4 and 
possible values lie in the range [0, 1]. Diversity is high in graphs which are not densely 
connected, such as bipartite graphs, but also in graphs where separate graph regions are 
joined by a relatively small number of bridging edges. In a social network, a high 
diversity indicates that separate communities exist, where people from one community 
have no direct ties with people in another, whereas a low diversity indicates that people 
are generally all connected to one another. 

2
#  disjoint_dispoles

1
4 2

D
n n

=
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3) 

Taken together, L, B, and D summarise a graph’s structure along three socially relevant 
dimensions. Plotting graphs in this space is a first step in determining which graphs are 
similar to one another. An abstract measure of the similarity of two graphs would then be 
the inverse Euclidean distance between two graphs in this feature space. We return to this 
idea in Section 6. 

4 The Lbd simplex 

Given the LBD scores of a graph we can plot its position in a feature space, with L, B, and 
D scores being orthogonal axes. For ease of visualisation, however, we make use of a 2D 
slice of the 3D feature space. We first compute a graph’s normalised L, B, and D scores, 
which we call l, b, and d respectively, by dividing each score by the sum of the three. 
This means a graph’s lbd triple is a projection to a point on a two-simplex, which we call 
its simplex representation. A point in the centre of the simplex shows that the graph it 
represents is balanced along the three dimensions, whereas a point that is closer to a 
vertex of the simplex is dominated by a particular feature. See also Richards and 
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Macindoe (2010b) for an alternative visualisation that encodes LBD scores as colours in 
RGB space. 

Figure 1 shows the lbd position of the networks analysed in this paper, as well as 
some graphs with well known structures. Points in the simplex are coloured according  
to their position in lbd space, with the red, green, and blue colour components 
corresponding to l, b, and d respectively. The two loci shown on the left of the simplex 
show the range of lbd scores that result from different parameter settings of Erdős-Rényi 
random graphs and Watts-Strogatz small world graphs with 300 vertices and density and 
rewiring parameters respectively in the range [0.2, 0.8]. The locus on the right shows the 
range of lbd scores for 300 vertex scale free graphs generated using the Barabasi-Albert 
preferential attachment model with the parameter setting for the number of edges added 
with each new node ranging from 2 to 8. The social networks analysed cover the upper 
right space in the simplex between these loci and notably do not fall in the same regions 
as these models. The majority of the networks analysed cover a restricted region in the 
simplex, yet it is possible to construct graphs whose lbd scores fall in other regions of the 
simplex (Richards and Macindoe, 2010a). 

Figure 1 Different networks have a wide range of LBD scores (see online version for colours) 

 

Note: Here, to clarify, their positions are projected onto the (1, 1, 1) plane 
(i.e., the lbd simplex). 

5 LBD distributions 

The LBD and lbd representations of a graph gives concise summaries of properties of the 
graph as a whole. But consider the case of a graph with multiple topologically distinct 
regions, an extreme example of which might be a series of cliques joined together in a 
chain by bridging edges. The cliques and their links would constitute a smaller scale 
structure, which we loosely call the graph’s ‘fine structure’. We would ideally like our 
representation to be fine grained enough to distinguish between this kind of graph and 
another graph without this fine structure that happens to map to the same LBD value or 
has the LBD scores in the same relative proportions, and hence the same lbd scores. More 
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generally, we would like a representation that reveals features of the fine structure of a 
graph and can answer such questions as whether the local sub-graphs centred on any 
given vertex in the graph are homogenous or heterogenous across the full graph. The 
graph described above is an example of a graph with heterogenous fine structure, whereas 
a ring is an example of a homogenous graph. 

We represent the fine structure of a graph as the distribution of LBD values of  
its constituent sub-graphs. Specifically, a graphs’ LBD distribution is a normalised 
histogram of the LBD scores of all the induced sub-graphs centred on each of its vertices. 
These distributions have a scale parameter, namely the radius of the sub-graphs, which 
controls the coarseness of the analysis. For example, to compute the radius 1 LBD 
distribution for a graph, we iterate over every vertex in the graph, computing an LBD 
score for the induced sub-graph formed by the vertex, its neighbours, and all the edges 
connecting them. Normalising the histogram counts by the size of the graph then yields a 
distribution over LBD scores. Note that as the radius of the LBD distribution approaches 
the diameter of the graph, the histogram will converge to a spike on the LBD score of the 
full graph, since in the limit each induced sub-graph will contain all of the graph’s 
vertices and edges. 

The LBD distribution can be thought of as an abstraction of the distribution of motifs 
produced by motif analysis. Any given motif has an associated LBD value, but some 
motifs may map to the same value; for instance all star graphs, regardless of size, map to 
L = 1, B = 0, D = 0. The LBD distribution then is akin to a motif distribution which 
generalises across classes of motif based on their LBD score. 

Figure 2 LBD distributions and simplex for the Enron network at radius 2, (a) leadership  
(b) bonding (c) diversity (d) lbd simplex (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Notes: The asterisk indicates the lbd location for the full graph (i.e., radius is now the 
diameter of the graph). The histograms show the frequencies of the parameters, 
given on the abscissa. 
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Figure 3 LBD distributions and simplex for the Linux-2008 network at radius 2, (a) leadership 
(b) bonding (c) diversity (d) lbd simplex (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Notes: The asterisk indicates the lbd location for the full graph (i.e., radius is now the 
diameter of the graph). The histograms show the frequencies of the parameters, 
given on the abscissa. 

Figures 2 and 3 show the radius 2 LBD distributions for two e-mail exchange networks. 
The first is extracted from the Enron e-mail dataset collected a part of the CALO project 
(Cohen, 2009). Each vertex is an e-mail address in the dataset and an edge links two 
vertices if the e-mail addresses both sent at least one e-mail to each other. E-mail 
addresses that only sent and never received or vice-versa were not included. The second 
comes from an analysis of Linux kernel mailing list traffic in January of 2008 compiled 
by Gnawali (2009). Here, each vertex is again an e-mail address, with some e-mail 
aliases being collapsed into a single vertex. An edge again indicates that at least one  
e-mail was exchanged each way between the two addresses. From the distributions in the 
two figures we can see that the sub-graphs comprising the Linux graph tend to have 
higher leadership scores, but lower bonding scores than those in the Enron graph. For 
Linux, this suggests that locally, people tend to communicate with highly connected 
individuals rather than directly with others in their neighbourhood. For Enron, the 
marginally higher bonding suggests more direct communication between people in local 
neighbourhoods and the lower leadership indicates there are fewer people who are 
involved in a disproportionately large number of different e-mail conversations than is 
the case with Linux. The higher diversity score in the Enron graph suggest a somewhat 
more fractured local graph structure, which together with the higher bonding is indicative 
of more groups of people who largely do not correspond with each other, being joined by 
a small number of common members. This makes sense for an organisation such as 
Enron where team members might e-mail one another and managers or team leaders 
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serve as communication bridges between teams. It is interesting that the full graph LBD 
score for the Linux graph is close to its radius 2 cloud of points in the simplex, whereas 
this is not the case for Enron. This demonstrates how in some cases the fine structure of a 
graph can be quite different from the structural features of the graph considered as a 
whole. 

Figure 4 Visualisation and lbd simplexes for the football network at radii 1 and 2, (a) the football 
network (Girvan and Newman, 2002), note the clustering of teams into local 
competitions (b) radius 1 (c) radius 2 (see online version for colours) 

 

(a) 

  

(b)     (c) 

LBD distributions can look dramatically different across different radii. Figure 4(a) 
shows a highly structured graph of football matches between division IA colleges in Fall 
of 2000 compiled by Girvan and Newman (2002), in which each vertex is a team and 
each edge is a match. The general structure is that local teams play one another, forming 
small bonded sub-graphs, and then their winners play one another, linking the  
sub-graphs. Figures 4(b) and (c) show the distribution of lbd values at radius 1 and  
radius 2. At radius 1, we can see that a large proportion of the graph is composed of  
sub-graphs with one or two vertices whose degree is higher than the rest of the vertices in 
the sub-graph. These vertices are division winners and their influence can seen in the mid 
to high range leadership values in the simplex. As is typical of radius 1 sub-graphs, 
diversity scores tend to be low. This tells us that when we look at just the sub-graph of a 
team and the teams that they have played against, there are one or two teams that have 
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played more games and that most teams have played games against opponents within 
their own local competition. At radius 2, there is a dramatic shift. Since the graph has a 
low diameter, radius 2 neighbourhoods include most of the graph, leading to a 
convergence in lbd scores. Leadership scores become much lower, because now most 
sub-graphs include most division winners which compete with one another in degree. 
Diversity also rises as different divisions are linked by the winners of those divisions 
playing one another. At higher radii, the point cloud converges towards the asterisk, 
which shows the full graph lbd score. 

By way of contrast, Figure 5 shows associations between actors involved in terrorist 
attacks in Southeast Asia drawn from the John Jay and Artis Transnational Terrorism 
Database (Atran et al., 2008). Note that both the graph and simplex visualisations show a 
range of different structures in the network’s local neighbourhoods, ranging from tightly 
connected groups to loose associations of individuals, but also that the distribution of lbd 
scores changes more slowly across radii than the Football network due to the large 
diameter of the network. 

Figure 5 Visualisation and lbd simplexes for the JJATT network at radii 1 and 2, (a) the JJATT 
network (Atran et al., 2008) contains a diverse spread of sub-networks (b) radius 1  
(c) radius 2 (see online version for colours) 

 

(a) 

  

(b)     (c) 
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6 Comparing graph fine structure 

Since the LBD distribution of a graph summarises its fine structure we can compare the 
LBD distributions of two graphs to judge their similarity. In performing this comparison, 
there are some choices and tradeoffs to be made. The first is what radius to consider for 
the distributions. For much social network analysis, researchers are interested in  
ego-centric sub-graphs within a social network, which corresponds to a radius 1 analysis, 
or perhaps radius 2 if they are interested in an analysis of the structure of the sub-graphs 
including friends of friends. From our experiments, the most interesting results come 
from analysis at these two radii, particularly radius 2, at which sub-graphs become large 
enough for diversity to be a significant factor. 

An issue which was not mentioned in Section 5 is whether or not to make the LBD 
space discrete when computing distributions. LBD distributions were derived from counts 
of the occurrences of real valued LBD scores for sub-graphs. However, for the purposes 
of ease of comparison we may wish to bin LBD values within discretised regions. The 
choice of the granularity of this discretisation will impact any comparison, since coarser 
discretisations may place distinct points in the same bin. We chose a compromise 
between abstraction and fidelity by discretising LBD space into 0.2 unit length cubes with 
the result that some graphs may be judged more similar than in the non-discretised case. 
Our results suggest however that the discretisation process does not introduce an 
unreasonable amount of noise. 

Another concern relates to the question of what kind of comparison of fine structure 
we want to make. Our construction of LBD distributions weights each discretised LBD 
region’s contribution in the representation by the proportion of sub-graphs that fall into 
that region. An alternative construction would be simply a vector of LBD values 
occurring in the graph. The distinction here is that in the former representation proportion 
is important, whereas in the latter mere presence is important. Consider for instance the 
case where two graphs were being compared and our criterion for similarity were 
whether one is a sub-graph of the other, larger graph. In this case, perhaps the  
presence-based representation may be more appropriate for comparison than our 
proportional representation. This consideration makes clear that in comparing LBD 
distributions we are comparing the relative proportions of the features of the graphs’ fine 
structure. An upshot of this approach is that because we normalise the distribution, a 
comparison between two graphs of different sizes is possible, whereas in a  
presence-based representation this would add complications. 

We begin our fine structure comparison by choosing a sub-graph radius, r, and 
computing histograms, with bin sizes of 0.2, of the LBD scores of the radius r induced 
sub-graphs in each graph. We then normalise the counts of the histogram bins by dividing 
by the number of vertices in each graph, yielding two LBD distributions. We compute the 
earth mover’s distance (Pele and Werman, 2008, 2009; Rubner et al., 1998) between 
these two distributions using Euclidean distance as the ground distance. Finally, we 
normalise by the maximum distance in the discretised space and subtract the result from 1 
to yield a similarity measure in the range [0, 1]. To demonstrate that this similarity 
measure produces intuitively plausible results, we followed the example of Peabody 
(2002) and computed the similarity of a variety of graphs to permutations of themselves. 
We used this technique on a set of graphs from a number of sources and modelling a 
wide variety of phenomena, from social networks and e-mail traffic to football match-ups 
and neural networks. Table 1 gives an overview of the graphs included in the analysis, 
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showing the number of vertices (| V |), edges (| E |), edge probability [P(E)], characteristic 
path length (CPL), diameter, and full graph LBD scores. Three artificial graphs not used 
in the analysis are included in the table for the sake of comparison; a binary tree, a small 
tree with a clique attached to one leaf, and an Erdős-Rényi random graph with a density 
parameter of 0.09. Where graphs originally contained directed or weighted edges, these 
were converted to unweighted and undirected edges, and this loss of structure must be 
kept in mind when interpreting the results of our analysis. To produce the permutations 
we chose a percentage of noise and randomly permuted that proportion of edges in the 
original graph. The similarity as a function of permutation averaged over ten trials for a 
variety of graphs is plotted in Figure 6, which demonstrates, as hoped, that our similarity 
measure judges graphs to be less similar to their permutations as the degree of 
permutation increases. As a twist on this result we performed the same process on an 
Erdős-Rényi random graph with 115 vertices and edge probability 0.09. This is the top 
line in the plot, almost coincident with the top of the figure. The consistent high 
similarity score shows that permuting a random graph does not necessarily make it 
dissimilar to itself. This is because the construction of Erdős-Rényi random graphs with 
such an edge probability leads them to have characteristic fine structure properties, 
namely low leadership, low bonding, and high diversity. The effect of permuting a 
random graph is to transform it into another random graph with the same parameters. 
Note also that there is a lower bound for each graph on self-dissimilarity caused by 
permutation, which is related to how close the original graph’s LBD distribution is to the 
region typical of Erdős-Rényi random graphs. 
Table 1 Vertices, edges, edge density, characteristic path length, diameter, and lbd scores for 

the analysed graphs 

Graph | V | | E | P(E) Diameter CPL 

Los Alamos 30 78 0.1793 4 2.0598 
Karate 34 78 0.1390 5 2.4082 
Dolphins 62 159 0.0841 8 3.3570 
Enron 143 623 0.0614 8 2.9670 
Santa Fe 116 174 0.0261 15 6.6576 
JJATT 263 998 0.0290 13 5.8750 
Linux 2001 302 749 0.0165 7 3.1614 
Linux 2008 447 2,122 0.0213 6 2.7919 
Bright 54 175 0.1223 5 2.5947 
Lesmis 77 254 0.0868 5 2.6411 
PolBooks 105 441 0.0808 7 3.0788 
Adj-Noun 112 425 0.0684 5 2.5356 
Football 115 613 0.0935 4 2.5082 
C-Elegans 297 2148 0.0489 5 2.4553 
PolBlogs 1,490 16,715 0.0151 8* 2.7375* 
Binary tree 127 126 0.0157 12 8.3510 
Tree with clique 62 496 0.2623 10 5.2512 
Erdős-Rényi 115 598 0.912 4 2.2632 

Note: The asterisk indicates that the PolBlogs graph is not connected and the reported 
values are for its largest component. 
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Table 1 Vertices, edges, edge density, characteristic path length, diameter, and lbd scores for 
the analysed graphs (continued) 

Graph L B D Type Source 

Los Alamos 0.6946 0.3683 0.2923 Co-authorship Palla et al. (2005) 
Karate 0.3996 0.2557 0.2402 Social Zachary (1977) 
Dolphins 0.1164 0.3088 0.1959 Social Lusseau et al. (2003) 
Enron 0.2377 0.3591 0.1455 E-mail Cohen (2009) 
Santa Fe 0.1681 0.2200 0.0683 Co-authorship Girvan and Newman (2002) 
JJATT 0.1362 0.4905 0.0744 Social Atran et al. (2008) 
Linux 2001 0.2510 0.1534 0.0333 E-mail Gnawali (2009) 
Linux 2008 0.3435 0.1929 0.0393 E-mail Gnawali (2009) 
Bright 0.2257 0.3770 0.2634 Semantic Palla et al. (2005) 
Lesmis 0.3972 0.4989 0.1755 Literature Knuth (1993) 
PolBooks 0.1627 0.3484 0.1877 Economic Krebs (2003) 
Adj-Noun 0.3799 0.1569 0.1320 Semantic Newman (2006) 
Football 0.0120 0.4072 0.2355 Sports Girvan and Newman (2002) 
C-Elegans 0.4066 0.1807 0.1106 Neural White et al. (1986) 
PolBlogs 0.2210 0.2260 0.0327 Citation Adamic and Glance (2005) 
Binary tree 0.0082 0.0000 0.04355 Artificial Macindoe (2010) 
Tree with clique 0.2541 0.9945 0.2570 Artificial Macindoe (2010) 
Erdős-Rényi 0.0768 0.0853 0.2110 Artificial Macindoe (2010) 

Note: The asterisk indicates that the PolBlogs graph is not connected and the reported 
values are for its largest component. 

Figure 6 Radius 2 self-similarity under random edge permutation (see online version for colours) 

 

7 Clustering graphs 

Armed with a method for judging graph similarity by fine structure features, we use it to 
find classes of graph that have these features in common. Using a hierarchical clustering 
approach we can take a set of graphs and find clusters of graphs that are similar to one 
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another but dissimilar to graphs outside their cluster. There are many choices of 
clustering algorithm available, so we opted for the generality and simplicity using 
average-link hierarchical clustering following the method in Dunham (2002). In this 
agglomerative approach to clustering we compute the pairwise similarities of all the 
graphs in the set to be clustered. Initially, each graph is in its own cluster. At each step 
we then merge the two clusters for whom the mean similarity is highest, resulting in a 
hierarchy of graph clusters. Since there is no gold standard of graph groupings against 
which to judge the outcome of the clustering, this should be viewed as an exploratory 
analysis. 

Figure 7 Radius 2 and full graph similarities, (a) radius 2 graph similarities (b) full graph 
similarities 

 

(a) 

 

(b) 

We performed our clustering analysis on the same set of graphs listed in Table 1.  
Figure 7(a) shows the pairwise similarity between each graph in the set computed with a 
radius of 2. By contrast, Figure 7(b) shows the similarity between the graphs judged by 
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the inverse of distance between their full-graph LBD scores. Contrasting these results, it 
is clear there is a qualitative difference between similarity judged at the full graph level 
and similarity judged at the fine structure level. This is particularly visible in the 
distinctive dissimilarity of the football graph from other graphs in the set, judged by the 
fine structure analysis which has discovered the structural regularities in the graph that 
result from the generative process of match-making that forms it and gives it the locally 
homogenous structure that we saw in Section 5. The general conclusion we can draw 
from this is that two graphs can have a similar global structure, judged by their full graph 
LBD score, and yet have quite dissimilar fine structures. 

Figures 8(a) and (b) show dendrograms for the results of the clustering using the 
radius 2 and full-graph similarity respectively. Horizontal lines represents clusters, with 
lines joining at a given similarity, shown on the horizontal axis, indicating that two 
clusters were chosen to be merged at that similarity threshold. The names of graphs 
derived from social data, such as e-mail correspondence or co-authorship are shown in 
red. Again, a key point is that the results are different, indicating that similarity in fine 
structure and full graph structure are not equivalent. 

Figure 8 Hierarchical clustering dendrograms based on radius 2 and full graph similarity,  
(a) radius 2 fine structure dendrogram (b) full graph dendrogram (see online version  
for colours) 

  
(a)     (b) 

Note: Graphs with red names are derived from social data. 

Looking at the clusters formed by the fine structure analysis, note that they often contain 
a mix of different kinds of graphs, for instance Bright, a semantic network, and 
PolBooks, a graph of book co-purchases, have the most similar fine structures. Other 
clusters are more homogenous, for instance the two Linux graphs are placed in the same 
initial cluster, which suggests that there is consistency in the way that e-mail 
correspondence on the Linux mailing list is structured over time. The Linux graphs in 
turn form part of a larger cluster that contains the majority of the social graphs, yet 
interestingly does not contain Enron, the other e-mail correspondence graph in the 
dataset. AdjNoun, a semantic network, and C-Elegans, a neural network, are the only two 
graphs that are judged as being more similar to each other than to any other graphs in the 
dataset in both the full graph and fine structure analyses. This fine structure similarity 
judgement stems from the fact that in both cases the LBD distributions of the radius 2 
sub-graphs of both these graphs balance bonding and diversity against one another whilst 
having a high-skewing spread of leadership scores. 
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The dissimilarity of the football graph from all other graphs, judged by its fine 
structure, is again due to a combination of its small radius, which leads to its radius 2 
sub-graphs being relatively homogenous, and the fact that there is low variation in the 
degree of its vertices, which leads to low leadership scores that are uncommon in other 
graphs such as social networks, which tend to contain more variation in connectivity. 
These considerations lead it to be placed in a cluster by itself in the fine structure 
analysis, whereas the full graph clustering does not respond to its unusually homogenous 
fine structure. 

Neither the full-graph nor the fine structure similarity measure judges the 
collaboration networks Santa Fe and Los Alamos to be particularly similar. In the case of 
fine structure, this is most likely because the small number of vertices in the Los Alamos 
graph makes its distribution much more sparse along the leadership axis than the Santa Fe 
graph, even though the bonding and diversity scores fall in a similar range. At the full 
graph level, the differences are even more pronounced, with the Los Alamos graph 
having a much higher leadership and bonding than Santa Fe. Together these suggest that 
the idiosyncratic characteristics of a particular group of collaborators are more crucial to 
the formation of a graph’s structure at both a macro level and in its fine structure than the 
mere fact that the graph represents people collaborating on papers as opposed so some 
other activity such as corresponding via e-mail. 

It is also interesting to note that both analyses make very similar judgements about 
the higher level clustering of the graphs. Both methods judge that there is one 
hierarchical cluster containing JJATT, Dolphins, Enron, PolBooks, Bright, and Lesmis 
and another containing AdjNoun, C-Elegans, PolBlogs, Karate, Santa Fe, and the two 
Linux graphs, with some disagreement about the placement of Football and Los Alamos, 
which are in a sense exceptional due to either their homogenous structure or small size. 
At the fine structure level these cluster distinctions seem to be related to the tightness of 
the spread along the leadership dimension, but at level of similarity at which these two 
clusters are finally merged the intra-cluster similarities are themselves quite low, making 
a general characterisation of the distinct clusters hard. 

Finally, note that in the fine structure clustering the majority of the graphs drawn 
from social data are placed together in one homogenous cluster. The excluded graphs are 
JJATT, which exhibits unusually high B scores in its sub-graphs, Dolphins, which is from 
non-human social data, and the Enron e-mail graph. By contrast, the clustering based on 
full graph LBD scores produces clusters that are very mixed with respect to the source of 
their graph data. 

8 Discussion 

In the previous section, we identified clusters of graphs with similar features in their fine 
structure. The natural question then is how does this common structure arise? One of the 
hopes of network analysis is that studying their structure may give clues as to the 
generative processes that underlie their formation. One might ask whether the structural 
features arising from some proposed model of network growth leads to the kind of 
structure seen in empirical data on networks. For example, which networks might be the 
result of the preferential attachment of new vertices to well connected old ones, as in 
Barabasi-Albert scale free networks, or which networks resemble the small world 
constructions of Watts and Strogatz? 
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In Figure 1, we showed the loci of full graph lbd scores displayed for a range of 
parameters for several well studied models, namely Erdős-Rényi random graphs,  
Watt-Strogatz small world graphs, and Barabasi-Albert scale free graphs. These loci 
characterise the range of full graph structural features that these models generate when 
used to produce graphs of roughly the same order as the empirical networks analysed. 
The fact that the lbd scores of empirically observed networks do not lie within any of 
these loci is evidence against any of these models being adequate characterisations of the 
generative processes that produced them. Although not shown here, this negative result is 
also supported by clustering results for these models using the fine structure similarity 
measure presented in Section 6, which place graphs generated by the models in clusters 
that are separate from the empirically observed networks. 

An unachieved objective was to characterise typical LBD distributions produced by 
well studied generative processes. As a first step towards this kind of analysis we can 
point to our investigation of the self-similarity of permuted Erdős-Rényi random graphs 
in Section 6 as an example of evidence for the existence of homogenous fine structure 
across different instantiations of a given model of network formation. Recall that in 
permuting the edges of a random graph the effect was to transform one Erdős-Rényi 
random graph into another instance of a random graph with the same parameters and that 
all of these instances were judged similar by our fine structure comparison technique. 
This empirical observation suggests that it is a property of the process that generates 
Erdős-Rényi random graphs that causes their fine structure to tend to be similar, but more 
analytic work is needed to prove this in the general case. Characterising the range of LBD 
distributions that other models generate is an important challenge, with only baby steps 
currently in place (Richards and Macindoe, 2010a), but initial investigations strongly 
suggest that random graph, scale free, and small world network growth models do not 
adequately characterise the empirically observed fine structure of social networks of the 
scale presented in this paper. 

On a more positive note, the fine structure analysis of some pairs of networks in 
Section 6 revealed some compelling pairwise similarities, for instance the Linux 
correspondence networks are very similar both in their full graph and fine structure, 
despite being drawn from data generated years apart. This suggests the existence of a 
consistent generative process responsible for this homogenous structure, which could in 
principle be modelled. However, we also have evidence that the generative process  
that produces graphs representing the same phenomena, for instance e-mail 
correspondence graphs, can be quite idiosyncratic. One might expect that if the  
Enron and Linux correspondence graphs were generated by a similar process, then their 
fine structure should be similar too, but in fact neither their fine structure nor their full 
graph structure is similar, which suggests that dissimilarities in the organisational 
structures of Enron and the Linux kernel developers are more crucial factors in the 
formation of the graphs than the mere fact that the graphs represent e-mail 
correspondence. As mentioned in the previous section we can draw similar conclusions 
for collaboration graphs. 

Our conclusion is that the specific conditions under which the phenomena that a 
graph models take place can be more crucial for its fine structure characteristics than the 
general class of phenomena that the graph represents. A core challenge for further 
research then is to characterise these conditions and the generative processes to which 
they give rise. Our fine structure analysis technique is a key a tool for judging the  
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plausibility of a proposed generative process by providing a method for judging the 
similarity between the fine structure of an empirically observed graph and graphs 
produced by a proposed model. Our technique can also help identify networks that may 
have common generative processes by highlighting networks that have high fine structure 
similarity at a range of local neighbourhood radii. Identifying the commonalities between 
these networks may then help develop models of generative processes that explain these 
structural similarities. 

9 Conclusions 

The key contribution of this paper is the introduction of a method for comparing the fine 
structure of graphs based on socially relevant features. The method makes use of the 
distribution of structural features of the sub-graphs that comprise the local 
neighbourhoods within the network at a given scale of granularity, which we called the 
network’s LBD distribution at that granularity. These features summarise structural 
characteristics that are particularly relevant for social networks, yet are general enough to 
be relevant for large classes of graphs. We demonstrated that the choice of granularity, 
controlled by the radius of the sub-graphs for which an LBD distribution is computed, can 
have a strong effect on the shapes of distributions and by extension the similarity 
measures computed from them. 

We demonstrated that our method produces intuitive results when comparing graphs 
against permutations of themselves and then used the measure to cluster a diverse set of 
graphs. We contrasted our clustering with that produced by a method that judged 
similarity based simply off the LBD score for a full graph and showed that the fine 
structure-based clustering gave a better agreement in some cases with our intuitions, for 
instance judging two graphs of e-mail correspondence from the Linux kernel mailing list 
to be similar in contrast with the full graph LBD clustering. 

We noted for the set of graphs we were analysing that their fine structural similarity 
did not seem to be dependent upon the phenomena that the graphs were modelling. This 
led us to conclude that idiosyncratic features of organisations were likely to have more 
influence on a graph’s fine structure than broad commonalities between people’s e-mail 
correspondence or collaborative research behaviour. Furthermore our analysis showed 
that graphs can be judged similar by their full graph structure and yet dissimilar by their 
fine graph structure, emphasising the importance of choosing the granularity of analysis 
at which a similarity judgement is to be made. 

Our technique is a useful tool both for comparing empirical graphs and for comparing 
the fine structure of graphs produced by a proposed generative process to the empirically 
observed graphs that they are seeking to explain. 
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