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Abstract: In many social networks, the connections between actors are formed 
because they participate in the same event, such as a set of scholars  
co-authoring a paper or colleagues having a teleconference. Therefore, we 
propose an event-driven model to capture the growth dynamics of social 
networks through modelling of the social events. We also investigate the 
evolution of event formation and the joint effect of attachedness and locality on 
the selection of participants for events in real social networks. We incorporate 
the evolution of event formation and the joint effect of attachedness and 
locality into our model. The experimental results suggest that our approach can 
simulate important network structures, such as hierarchical communities and 
assortativity, and better characterise the growing process of real networks than 
non-event driven models. 
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1 Introduction 

Social network and complex network studies have attracted increased interest in recent 
decades. Many real-world complex networks have been shown to exhibit a common set 
of properties. The properties include power-law degree distributions (Barabasi, 2003), the 
small world effect (Barabasi, 2003), assortative mixing (Newman, 2002; Redner, 2008), 
and kinetic properties exhibited in the growing process of social networks (Barabasi  
et al., 2002; Kumar et al., 2006; Leskovec et al., 2005), e.g., the shrinking diameter 
phenomenon. These properties in real networks represent a significant departure from 
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random networks (Bollobas, 2001). There is, however, little consensus on the cause of 
these non-random features. 

Social networks typically capture relationships (or connections) between actors  
(e.g., authors) through events (e.g., co-authoring a paper). In many real networks, the 
connections are formed between actors because they participate in the same event. For 
example, in collaborative networks, an event can constitute researchers co-authoring a 
paper together. Therefore, an event-driven approach is a natural way to model the growth 
of these event-based networks. For each pair of participants in an event, a connection is 
formed and all the participants form a clique (a clique Kn is a simple graph with n nodes 
in which all pairs of the nodes are directly connected). Therefore, numerous cliques are 
observed in these networks. It is difficult for non-event driven models (edge centric) to 
recreate this phenomenon. Event-driven models are also more general in that any edge 
centric model (modelling the formation of edges between node pairs) is equivalent to a 
corresponding event-driven model where exactly two actors participating in each single 
event. At last, in the event-drive context, we can model richer information. For example, 
three people, A, B, and C, participate in an event. A knows B and C, but if B and C do not 
know each other, then A is probably a bridge between B and C. Also, if we further 
consider the properties of the events and the causal relationship between events, we may 
garner more insights. 

In an evolving social network, the set of nodes and the set of edges change over time 
due to new nodes joining, old nodes leaving, and new connections forming between 
nodes. The behaviour of nodes (e.g., the selection of nodes to connect to) can vary widely 
and can evolve over time (Qiu et al., 2010). For example, in scientific collaboration 
networks, researchers usually publish papers with more senior researchers when they are 
junior, and more junior researchers when they are senior. In addition, the behaviour of a 
whole network can also evolve over time. For example, a research community may grow 
slowly at first, but the growth rate can then increase rapidly as it attracts more members 
and gains prestige. Most existing network growth models we have encountered do not 
consider the evolution of behaviour, especially from the perspective of event-driven 
growth. 

To characterise the growth of social networks, a variety of factors have been 
explored, including attachedness (the degree of nodes) and locality (distance between 
nodes) (Barabasi and Albert, 1999; Jin et al., 2001; Kumar et al., 2000; Zhang et al., 
2010). Section 2 provides an overview of the existing studies. Nevertheless, the joint 
effect of attachedness (degree) and locality (distance) on network growth dynamics has 
not been well explored. 

In this paper, we study the evolution of event formation in real social networks and 
the joint effect of attachedness and locality on the selection of participants for events. We 
then introduce an event-driven growth model that incorporates the joint effect of 
attachedness and locality, as well as the evolution of event formation. Based on 
simulation results, we discover that our model can better characterise the growth of a 
large scale real network (e.g., collaborative networks in a nanotechnology community) in 
terms of exhibiting properties such as degree distribution, clustering coefficients, and 
assortative mixing. 

The rest of this paper is organised as follows: Section 2 introduces the background for 
this study and gives a brief review of related work. Section 3 presents some observations 
in real social networks that motivate our work. Section 4 describes the proposed  
event-driven driven framework for network growth model, and introduces an  
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event-driven locality and attachedness-based model that incorporates the joint effect of 
locality and attachedness and considers the evolution of node behaviour and event 
formation. Section 5 presents quantitative analysis of some important aspects of the 
model settings, compares the proposed model with two other models, and shows the 
impact of the model on the topological properties and correlated properties of the 
networks. Finally, Section 6 notes some potential future work and conclusions. 

2 Related work 

In recent years, there has been intense interest in the dynamics of complex networks. 
Much of this work has focused on the static analysis of social networks, as well as 
modelling both the static topological properties and dynamic patterns associated with real 
social networks. The majority of the studies focused on either attachedness or locality. 

Attachedness measures how well nodes are connected to other nodes in complex 
networks, and therefore is usually indicated by the degree of the nodes. Barabasi and 
Albert (1999) developed a notable preferential attachment (PA) theory that specifies high 
degree nodes are always favoured when building new connections. They proposed a 
model that new nodes are added to the network serially, while the probability that a new 
node will be linked to an existing vertex depends on the existing vertex’s degree di, 

.i jj
d d∑  Using these simple rules, their model generates networks exhibiting  

power-law degree distributions and the ‘rich get richer’ phenomena. 
Many existing models exploit the locality explicitly or implicitly, and assume that the 

formation of a new connection between two nodes is related to their distance in the 
existing topology. Jost and Joy (2002) describe a purely distance-based scheme where 
each new node is connected to a randomly selected node, and the subsequent connections 
are related to the distance of the destination node. Davidsen et al. (2002) present a 
referral model that connections are always formed between two nodes that share a 
common neighbour. This model emulates real-world introductions, where one person 
introduces two acquaintances. Such a simple evolution scheme is generally viewed as a 
basis for modelling the evolution of social networks. The authors demonstrate that this 
simple scheme is able to reproduce non-trivial features of social networks including small 
network diameter, high clustering, and scale-free or exponential degree distribution. The 
scheme is also known as the triangle-closing model (Leskovec et al., 2008). The copying 
mechanism (Kumar et al., 2000) specifies that at each time step a new node is added to 
the network. The new node copies a number of links from a ‘prototype’ node that is 
selected randomly from the existing nodes whereas choosing the remaining neighbours is 
random. Similar graph growth mechanisms also include models that implicitly or 
explicitly rely on the locality heuristics (Leskovec et al., 2005; Guimera et al., 2005; 
Kossinets and Watts, 2006; Krapivsky and Redner, 2001; Liben-Nowell and Kleinberg, 
2007; Watts et al., 2002) or specified feature similarity (correlation) between nodes 
(Xuan et al., 2007). 

Some models also explicitly or implicitly exploit the joint effect of distance and 
locality. Vazquez (2001) has designed the walking on a network scheme to simulate the 
graph growth process. At every time step, a new node vi is added and linked to a 
randomly selected node vj through a directed edge. The node vi then mimics a ‘random 
walk’ on the network by following the edges starting from node vj and linking to their 
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end points with probability p. This step is repeated for those nodes to which new 
connections were established, until no new target node is found. Some more recent work 
on this front includes Morris and Goldstein’s (2007) team-based Yule model and  
Zhang et al.’s (2010) DDG model. The team-based Yule model maintains teams during 
modelling, and uses PA for within-team actor selection and random selection for 
generating new collaborations of actors outside the team. Hence, it adopts a binary 
locality measure (i.e., whether an author is within a team or outside of a team). In 
contrast, the DDG model uses the ratio of degree to distance to select two nodes to 
connect in the networks. In other words, the DDG model uses a ‘continuous’ measure for 
locality. 

Guimera et al. (2005) propose a team assembly mechanism by investigating the 
interplay between ‘incumbents’ and ‘newcomers’ in the context of collaboration 
networks. The model implicitly incorporates the evolution of node behaviour  
into modelling. Morris and Goldstein’s (2007) Yule model focused on modelling  
co-authorship networks. However, it differs from ours in several ways. First, we 
explicitly present an event-driven framework to model the growth dynamics of  
event-driven networks while they do not. Second, we study the behaviour evolution of 
nodes and event formation, which is incorporated into our model. In contrast, Morris and 
Goldstein’s model do not model the evolution of behaviour. Third, our model is more 
efficient than the Yule model because we do not have to maintain any team structure. 

3 Observations and motivations 

In this section, we present some observations from a nanotechnology collaboration 
network, NanoSCI, as well as the motivations for our event-based hybrid model. 

NanoSCI is a collection of papers on nanotechnology. It offers an extensive database 
including 292,323 researchers and 368,511 papers that are indexed by the Science 
Citation Index (SCI) database spanning 1980 to 2006. In this paper, we use data from 
1980 to 2005 because our data for 2006 is only complete through August 2006. 

NanoSCI is appealing for investigating social network growth dynamics for the 
following reasons. First, collaborative networks have been widely used in scientometrics 
and social networks studies. Second, collaboration networks have been known to possess 
many static and dynamic properties that are similar to other social networks (Barabasi  
et al., 2002; Newman, 2004). 

NanoParticle, a sub-community in NanoSCI, is also studied in this paper. 
NanoParticle has 81,734 authors and 69,530 papers spanning 1980 to 2006. 

In the following subsections, we study the formation of events and their evolution 
regarding the number of participants. We then study the behaviour evolution of nodes 
with respect to their activeness. Finally, we study the effects of degree and distance on 
formation of new connections and events. 

3.1 Growth rates 

In this section, we assess the growth rate in terms of the number of events (papers), nodes 
(authors), and edges (collaborations). Figure 1 shows in log-log scale the edge growth 
versus node growth for the NanoParticle and NanoSCI communities respectively  
with duplicated edges removed. It appears that the growth speed is almost linear in  
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the log-log scale, which implies that the edge growth increase as a power law  
function of the node growth. The regression results show that their growth rates are  
|E(t)| = 2.3453 * |V(t)|1.0238 and |E(t)| = 2.5475 * |V(t)|1.0409, respectively. E(t) and V(t) are 
the edge set and the node set in the cumulative network at time t respectively. The 
corresponding edge densification rates [derivative on V(t)] for the two communities are 
ΔE(t) = 2.4011 * |V(t)|–0.0238 and ΔE(t) = 2.6517 * |V(t)|–0.0409, respectively. 

Figure 1 The number of papers (events) and the number of collaborations (edges) increase 
linearly in log-log scale with the number of authors (nodes) (see online version  
for colours) 

 

The edge density is important for growth models. For example, the PA model (Barabasi 
and Albert, 1999) assumes that the number of edges has a linear relationship with the 
number of nodes. With different setting of the slopes in the linear relationship, the model 
shows different behaviours on some properties, e.g., clustering coefficients. In Section 
5.4, we also present a variant PA model, APA. APA uses the growth rate learned from 
NanoSCI instead of linear growth. APA shows a different behaviour than PA. 

Because we are studying event-based models, we also study the relationship between 
the number of paper-writing events and the number of nodes. Figure 1 also shows the 
node growth versus event growth for the NanoParticle and NanoSCI communities 
respectively. It appears that the growth speed is almost linear in the log-log scale, which 
implies that the node growth increase as a power law function of the event growth.  
The regression results show that their growth rates are |D(t)| = 1.0636 * |V(t)|0.9850 and  
|D(t)| = 1.2746 * |V(t)|0.9855 respectively, where D(t) is the number of events (papers) 
occurred before time t. Thus, the corresponding node densification rates for the two 
communities are ΔD(t) = 1.0476 * |V(t)|–0.0150 and ΔD(t) = 1.2561 * |V(t)|–0.0145. 

3.2 The number of participants in events and its evolution 

The number of participants for an event is an important factor because it determines the 
order of a clique (and the number of new connections) formed in a collaborative network. 
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It has been reported that the number of secondary authors (authors other than the first 
author) tends to be a Poisson distribution (Morris and Goldstein, 2007). Our observations 
in NanoSCI and NanoParticle verify this. In Figure 2(a), the distributions of the number 
of secondary authors in both NanoSCI and NanoParticle match a Poisson distribution 
closely, although they have heavier tails than a Poisson. The average number of co-author 
(plus the number of secondary author by 1) is 4.3576 and 4.3563 for NanoSCI and 
NanoParticle respectively. 

Figure 2 (a) Distribution of the number of secondary authors per paper vs. Poisson distribution 
(b) the average number of co-authors per paper evolve linearly in semi-log scale with  
the number of total nodes in both NanoSCI and NanoParticle (see online version  
for colours) 

 
(a) 

 
(b) 



   

 

   

   
 

   

   

 

   

   20 B. Qiu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

We also notice that the average number of participants (co-authors) in events (papers) 
evolves over time. Figure 2(b) shows that the mean numbers of co-authors in both 
NanoSCI and NanoParticle increase nearly linearly in semi-log scale from around 4.0 to 
nearly 5.0 in the latest ten years. It suggests that researchers are becoming more 
collaborative in recent years. Similar observations have also been reported, for example, 
in the collaboration network of computer science (Huang et al., 2008). The average 
number of participants in an event-driven model is very important because it decides the 
order of the resulted cliques in the collaborative networks, and the edge density of the 

resulted sub-graph because the edge density of a clique is # ( 1) / 2 1.
# 2

edge n n n
node n

− −
= =  

Also, it has an effect on average separation and clustering coefficients in networks. 
Therefore, it is important to include the evolution of the average number of participants 
in the growth model. 

3.3 The selection of participants for events 

In event-driven networks, the number of events a node can participate in is limited due to 
the nodes’ available time and effort. Also, different nodes may have different degrees of 
activeness due to differences of their interests. In this section, we study participant 
selection for events. Specifically, we study the research lifetime of researchers (details in 
the following Section 3.3.1), effect of node degree and distance between node pairs on 
participation in events, and the interaction between degree and distance on determining 
new connections. 

3.3.1 Distribution of lifetime of nodes 

We studied the distribution of research lifetime of researchers in NanoSCI. The research 
lifetime of a researcher is defined as the length in years from the researcher joining the 
community to leaving the community. However, there is no explicit signal when a 
researcher leaves. Therefore, we decide that a node has left if it has been inactive for 3+ 
years (Qiu et al., 2010). Figure 3(a) shows the distribution of lifetimes of nodes that have 
been inactive for 3+ years in NanoSCI in 2005. The lifetime suggests how soon nodes 
evolve from active to inactive. In other words, we are using a binary measurement of the 
researcher activeness. In the figure, we see that about 80% of researchers switch from 
active status to inactive in one year and a very small fraction of researchers can stay 
active in the community longer than five years. This makes sense because many co-
authors are graduate students, they leave the community after they graduate, and only a 
few of them may stay in the community as faculty or scientists. Figure 3(a) also shows 
the seniority (Qiu et al., 2010) distribution of all nodes and active nodes in 2005. 
Seniority measures the length of time the nodes have been active in the networks. 

However, it is hard to model time in years in growth models. Note that the degrees 
and the active time of nodes has high correlations for both NanoSCI and NanoParticle. In 
other words, junior researchers usually have small degrees and active senior researchers 
usually have high degrees, and vice versa. Therefore, we can use degrees of the leaving 
nodes to approximate their lifetimes. Figure 3(b) shows the degree distributions of 
inactive nodes in NanoSCI in 2005. In other words, it shows the lifetimes measured in 
degree. In the simulation, when a node joins the network, the model randomly samples a 
maximum allowed degree the node can have from the lifetime (measured in degree) 
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distribution observed in the real data. Once the node achieves the maximum degree, it 
becomes inactive. Note that the maximum number of events a node can participate in is a 
good measure of lifetime as well, and we see that models using either maximum allowed 
degrees or maximum allowed events show similar results. Also, notice that this is a 
snapshot, the real distribution would be slightly different because the endpoints in the 
world are not artificially bounded. 

Figure 3 (a) Distribution of lifetimes in years and seniority distributions of nodes in NanoSCI in 
2005 (b) degree distributions of all nodes in NanoSCI and of inactive nodes obey power 
law like dependency with an exponential cut-off P(k) ∝ k–τ e–k/kc (see online version  
for colours) 

 

(a) 

 

(b) 
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Figure 4 (a) The percentage of nodes with certain degrees that form new connections  
(b) the percentage of node pairs with certain distance that form new connections  
(see online version for colours) 

 
(a) 

 
(b) 

3.3.2 Effects of locality and attachedness 

Locality and attachedness have been traditionally considered as principal factors in the 
formation of connections. In Figure 4(a), we show the proportion Fd(k) = Mk / Nk, where 
Nk denotes the number of nodes with degree equal to k, and Mk are the nodes among them 
that form new edges in the next year (2002 or 2005). In Figure 4(b), we show the 
proportion Fr(r) = Mr / Nr, where Nr denotes the number of node pairs at distance r, and 
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Mr are the pairs among them that form new edges in the next year (2002 or 2005). These 
demonstrate explicitly that nodes form new links proportionally to the degrees (when 
degrees are not extremely large) of the nodes and inversely proportionally to their 
topological distance. Note that in Figure 4(a), for extremely large degrees (> 100), the 
ratios for NanoSCI (2002) and NanoParticle (2002) are not accurate due to too few nodes 
with such large degrees (therefore, the corresponding points in the figure are not 
connected by the curves), while for NanoSCI (2005) and NanoParticle (2005), the ratios 
are relatively smaller – it suggests that nodes with extremely high degree could be less 
active. From Figure 4(b), we can also see that the majority of the edges are formed 
between node pairs at distance 2. 

To distinguish the joint effect of degree and distance, we need to find a function F(.) 
satisfying Pr(u, v) ∝ F(d(u), d(v), r(u, v)) such that its marginal distribution on d(u)  
[or d(v)] and on r(u, v) has a similar shape as that shown in Figure 4(a) and Figure 4(b), 
respectively, where u and v are two nodes in a network, Pr(u, v) is the probability to form 
a connection between u and v. d(.) is a function to get the degree of a node, r(.) is a 
function to return the distance between the input node pair. It is generally a hard problem 
to discover the function. One of the ways to approximate it is to define a set of simple 
functions such as exponential, log, multiplication, minus, etc., then use a genetic 
algorithm (GA) (Mitchell, 1996) to build formulas based on the predefined function set. 
Maximum likelihood estimate (MLE) can be used to choose a formula that has the best fit 
to data. Due to limited space, we leave this to another paper. Instead, we study in the next 
subsection the interaction between degree and distance. Specifically, we study, given the 
degree of a node, how likely the node will connect to nodes with different hop distances 
away. 

3.3.3 The span distance of new edges vs. the degree of nodes 

Span distance of a new edge is the distance between the end nodes of the edge at the 
moment before the formation of the edge. In Figure 5, we show a distribution of span 
distances of the new edges connected to nodes with different degree ranges. Note that 
repeated edges (hop distance equal to 1) are removed. From the figure, we see that nodes 
with all levels of seniority (degree) have significant high probabilities to connect to nodes 
two hops away. The probability to connect to nodes with a long distance tends to 
decrease for all types of nodes, and the trends are more significant for nodes with rich 
experience. For example, the most junior researchers (black star solid curve) have almost 
identical probabilities to make new edges spanning three to seven hops and then have less 
and less probabilities to make new edges spanning more hops. For the most senior 
researchers (blue square solid curve), the probabilities always decrease as the span 
distance increases. This may suggest that senior researchers usually have stable local 
groups to collaborate with and may have more stable research topics as well. The factor 
of locality seem always to play a role when making connections for senior researchers. 
However, for junior researchers, the locality has much less effect especially when hop 
distance is equal to three to seven. Also, junior researchers have higher probabilities than 
senior ones to connect to nodes that are originally far away. Note that the curves 
corresponding to nodes with high degrees may be shorter, because they on average have 
smaller separation to all nodes in the networks. In the figure, Distance = Inf indicates that 
edges are formed between two disconnected nodes, and Distance = –1 means that the 
edges are connected to new added nodes. 
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Figure 5 Distributions of span distances of the new edges connected from nodes with certain 
degrees in NanoSCI in 2005 

 

Note: Distance r = Inf indicates edges connected to disconnected nodes, and r = –1 
indicates edges connected to new nodes with degree 0. 

4 An event-driven framework and a hybrid growth model 

We have argued that an event-driven model may be a more general and natural way to 
model networks, and have seen that both locality and attachedness play important roles in 
network dynamics. We have also studied behaviour evolution. In this section, we propose 
an event-driven framework for modelling networks. Based on the framework, we develop 
an event-driven locality and attachedness based growth model. 

To compare the networks generated by different models, it is important that the 
numbers of nodes and edge densities in the networks are identical. For non-event driven 
models, they can directly use the same edge densities defined in Section 3.1. To compare 
event-driven with non-event driven models, we should also make them have the same 
edge densities. The following specification describes the details of the event-driven 
framework. It also ensures that the event-driven models can have the same edge densities 
defined in Section 3.1. 

1 t ← 0. 

2 Add an event as follows: 
(a) Sample m (the number of participating nodes) according to Pr(m) ∝ Fm. Fm is 

the distribution of the number of participants in events. It can be a Poisson 
distribution or the distribution observed in real networks, please refer to  
Section 3.2. 

(b) WHILE C(m + 1, 2) > |E(t)| – |Ec|, where |Ec| is the number of edges in the 
current network and |Et| is the number of edges at time t estimated according to 
some predefined edge density. 
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1 Repeat: add one new node and set t ← t + 1. 
(c) Sample m nodes as participants based on some schema, for example preference 

attachment or hybrid schema, put all selected nodes into SetP (the set of 
participants in the event). 

(d) Form connections between nodes in SetP according to some schema, for 
example, for a collaborative network, an edge is formed between any node pair. 

3 Repeat 2 until t is equal to predefined parameter. 

Based on the framework, we propose an evolution-aware event-driven locality and 
attachedness-based growth (EELAG) model described as follows: 

a Replace Step 2(a) with: 
• Sample m according to Pr(m) ∝ Fm(λ(t)). Fm is a stochastic Poisson distribution 

with its mean evolving over time or the distribution observed in real networks 
(see Section 3.2 for details). 

b Step 2(b)1 is changed to: 
• Repeat: add one new node n, sample the lifetime of the node nlifetime according  

to P(f) ∝ Ff, set lifetimedegree(n) ← nlifetime, and set t ← t + 1. Ff is the lifetime 
(measured in degree) distribution predefined or learned from real data (refer to 
3.3.1 for more information). 

c Step 2(c) is replaced with the following statements: 
• With a probability Pα, set u ← the newly added node. Otherwise, set u ← 

randomly sample an active node u(d(u) < lifetimedegree(u)) according to a PA 

schema: ( ) 1( ) .
( ( ) 1)

v

d uPr u
d v
+

∝
+∑

 Pα is set according to the percentage of papers 

including new researchers in the real data. 
• SetP ← SetP ∪ {u} 
• WHILE d(u) = = 0 AND |SetP| < m 

1 set u ← randomly sample an active node using PA schema 
2 SetP ← SetP ∪ {u}. 

• WHILE |SetP| < m 
1 based on d(u), sample a distance r according to Pr(r) ∝ Frd(r|d). Frd(r|d) is 

learned from real data (more information in Section 3.3.3) or some 
approximating functions 

2 randomly select nodes with distance r. 

In summary, this model first decides the number of participants based on a stochastic 
Poisson distribution, then samples a node as the leading node with using PA. Whenever 
the sampled node is not connected to the graph, a new node is sampled as leading node 
and the previous node is kept as a participant. Then, based on the degree of the leading 
node, it decides the probabilities for how far away to make new connections, and then 
randomly chooses nodes. This model is proposed based on the observations and 
motivation introduced in Section 3. 
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5 Simulation and evaluation 

We set up experiments to evaluate the proposed framework and the EELAG model. We 
use experiments to compare event-driven models with the corresponding non-event 
driven models, and study the effect of the average number of participants of events in  
event-driven models. We also compare EELAG with some other models that use 
attachment preference or locality preference, respectively. We set the growth rates as the 
same as that in NanoSCI for all models and simulate networks of the same size as that of 
NanoSCI. 

5.1 Event-driven vs. non-event-driven 

In this subsection, we study the difference on clustering coefficients in networks 
generated by event-driven models and corresponding non-event driven models. To focus 
on the comparisons between event-driven and non-event driven models and avoid 
including effects of other factors, a simple purely random (PR) model and its 
corresponding event-driven variant (EPR) are used. In the PR model, in each time step, a 
node is added and some connections are made between uniformly randomly selected 
pairs of nodes. For EPR, we only need to change a step in the event-driven framework as: 
uniformly randomly select m nodes as the participants for the event. An identical edge 
density is used for both PR and EPR. 

Figure 6 shows degree-dependent clustering coefficients, C(k), that are defined as the 
average local clustering coefficients (LCC) of all nodes with degree k. C(k) of NanoSCI 
can be reasonably fit by a power law C(k) ∝ k–α with α = 0.82. This kind of power-law 
decay of degree dependent clustering coefficients is a signature of a hierarchical structure 
in the network (Vazquez et al., 2002). The networks generated by EPR has a higher LCC 
than those generated by PR, and share the same trend with C(k) observed in NanoSCI. 

Figure 6 The average LCC as a function of the degree of nodes (event-driven vs. non-event 
driven) (see online version for colours) 
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Note that for each model, we generate 50 networks and the figure shows the average C(k) 
calculated from the networks. For all the following experiments, we do it the same way. 

5.2 The effect of average number of participants in event-driven models 

In the event-driven model, the numbers of participants of events are sampled from a 
Poisson distribution. In this subsection, we study how the average number of participants 
affects the clustering coefficients. Again, we use the simple PR event-driven model, EPR, 
instead of more complex models to focus on identifying the effect of the average number 
of participants in the event-driven models. We use three versions of the model with the 
Poisson’s mean equal to 2, 4, and 8 respectively. The edge density is fixed in all three 
variants. 

Figure 7 shows that with different average numbers of participants, although the 
trends of C(k) are similar, the absolute values of C(k) of the generated networks are quite 
different. We see that C(k) is higher in networks generated by models with larger average 
numbers of participants, indicating more closing triangles in the network (neighbours of a 
node are also neighbours). 

Figure 7 The average LCC as a function of the degree of nodes (different average number of 
participants in event-driven models) (see online version for colours) 

 

5.3 Behaviour evolution vs. none behaviour evolution 

In this subsection, we compare a behaviour evolution version of the EPR model (EEPR) 
with EPR. One difference between these two models is that EEPR has activeness 
(lifetime) control on nodes. The other difference is that EPR uses a fixed average number 
of participants (overall mean number of co-authors in NanoSCI), while EEPR uses an 
evolving average number as that in NanoSCI (as shown in Section 3.2). The edge 
densities used by these two models are the same. Figure 8 shows EEPR has slightly better 
performance in modelling the degree distribution, especially for small degrees. 
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Figure 8 Degree distributions (behaviour evolution vs. none behaviour evolution) (see online 
version for colours) 

 

5.4 Comparisons between EELAG, APA and ADG on simulating NanoSCI 

In this section, we compare the EELAG with the APA and the ADG models. APA is a 
variant from Barabasi et al.’s (2002) PA model. In each time step, one new node is added, 
and the number of new edges are decided from the growth rate and edge density learned 
from NanoSCI. We do the modifications for the purpose of fair comparisons that all 
models should follow the same growth rate and edge density. The edges in each step are 
formed between the newest node and other nodes selected according to their degrees. 
ADG also adds one node and a number of new edges decided by the NanoSCI’s growth 
rate at each step. It first randomly selects a start node u, and then select end nodes with 
probabilities p according to the distance r to the end nodes. Specifically, p = 1 = r, where 
r is the distance. For disconnected nodes, the distances r are defined as a large enough 
value (e.g., 20) instead of infinity. Therefore, the disconnected nodes also have chance to 
form edges. For both APA and ADG, networks are grow on an initial network. The initial 
network has 500 nodes and edges are formed by a simply random process as that in PR. 
The edge density is as the same as that in NanoSCI. We choose APA and ADG because 
they are derived from classical models and use the factor of the degree and the distance, 
respectively. 

5.4.1 Degree distribution 

In this subsection, we study the degree distributions of the simulated networks created 
using different models, and compare them with the distribution observed in NanoSCI. 
Figure 9 suggests that EELAG recreates the similar phenomenon in NanoSCI on the 
proportions of nodes with small degrees, while ADG and APA do not recreate the 
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phenomenon. For proportions at higher degrees, the networks generated by EELAG agree 
with NanoSCI and have very similar power-law decay. 

Figure 9 Degree distributions (EELAG, APA and ADG) (see online version for colours) 

 

5.4.2 Degree-dependent clustering coefficients 

We study C(k) of the networks simulated by different models. From Figure 10, we see 
that APA fails to simulate the trends observed in NanoSCI. Both EELAG and ADG show 
similar trends on C(k) to NanoSCI, however, EELAG is much closer to NanoSCI. 

Figure 10 The average LCC as a function of the degree of nodes (EELAG, APA and ADG)  
(see online version for colours) 
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5.4.3 The average degree of the nearest neighbours 

Social networks are known to be assortative that the degree of connected nodes shows a 
positive correlation. Statistical analysis can be extended by inspecting knn(k), which is the 
average degree of neighbours of all nodes with degree equal to k. For assortative 
(disassortative) networks, knn(k) is monotonically increasing (decreasing) function of k. 
NanoSCI is an assortative network and knn(k) of NanoSCI can be approximated by a 
power law knn(k) ∝ k–β, with β = 0.21. Again, EELAG performs better than both APA and 
ADG, and its knn(k) is very close to that of NanoSCI in Figure 11. Note that the behaviour 
of APA is different from that of Barabasi et al.’s (2002) PA reported by Newman (2002) 
because APA uses an evolving growth rate observed in NanoSCI instead of a constant 
linear growth. 

Figure 11 The average degree of neighbours as a function of degree (EELAG, APA and ADG) 
(see online version for colours) 

 

6 Conclusions 

In many social networks, connections are formed between actors because they are 
involved in the same event. For these networks, it is natural, general, and powerful to use 
event-driven models to characterise their growth dynamics. Therefore, we propose an 
event-driven framework to facilitate the creation of event-driven growth models. 

We have also studied the evolution of node behaviour (activeness) and event 
formation in social networks, and exploited the effect of both locality and attachedness on 
the formation of new edges. We found that the average number of participants of events 
evolve over time in NanoSCI, and the effects of distance and degree on selection of 
participants of events also change over time. 

These analysis lead us to propose a hybrid model based on an event-driven 
framework that considers the evolution of event formation and the joint effects of 
distance and degree. Based on metrics that are informative in characterising the network 
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structure, such as degree distribution, degree-dependent clustering coefficients and knn(k), 
our experiments show that the networks generated by our event-driven hybrid model 
exhibit structures similar to real networks, while other non-event driven models fail to 
recreate these structures. Future work arising from our results so far includes: carrying 
out experiments on more real networks, further studies of important factors of connection 
formation and their joint effect, modelling events with richer information, and 
incorporating more aspects of behaviour evolution. 
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