Parameter study of synchroniser mechanisms applied to Dual Clutch Transmissions
by Paul D. Walker; Nong Zhang
International Journal of Powertrains (IJPT), Vol. 1, No. 2, 2011

Abstract: The modelling, simulation and analysis of a synchroniser mechanism as a component of wet Dual Clutch Transmissions (DCT) is presented in this paper. Mechanism engagement is demonstrated using rigid body models with a detailed drag torque model, to establish its variation over the process. Dimensionless equivalent cone and chamfer torques are used to study the impact of drag torque from a design perspective, and parameter studies performed to verify this method. Outcomes suggest the high dependency of speed synchronisation on both cone angle and friction coefficient, while the chamfer torque are highly dependent on chamfer angle, but not friction coefficient.

Online publication date: Thu, 26-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com