A study of noise transmission through cylindrical shell using modal truncation approach
by Ali El Hafidi; Bruno Martin; Waleed F. Faris; Béatrice Lay
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 7, No. 3, 2011

Abstract: The study of the vibroacoustic behaviour of cylindrical structure like aircraft fuselage requires the establishment of very large models, and the numerical results which can be obtained are often difficult to interpret. On the other hand, the study of simple structures such as cylindrical shells is useful to validate the criteria and tools that can be used to simplify the models of complex structures. The presented study concerns the sound transmission through a cylindrical shell coupled to a cavity and subjected to an incident acoustic wave. Noise reduction is obtained and validated by a numerical method which uses structural and acoustical modes. A criterion for selecting eigen modes for the modal truncation is presented. Based on a principle of modal coupling, this criterion allows a judicious choice of modes that have an important influence on noise reduction. This criterion is used to reduce the length of acoustical and mechanical bases and to decrease time calculation.

Online publication date: Tue, 14-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com