Machine capacity allocation strategies for scheduling a large multi-chip assembly line
by Sang-Jin Lee, Tae-Eog Lee
European J. of Industrial Engineering (EJIE), Vol. 5, No. 3, 2011

Abstract: A multi-chip package (MCP) consists of several chip modules in a single package. We consider a scheduling problem for assembling MCPs. In order to assemble an MCP, a lot should repeat assembly process stages such as die attach and wire bonding as many as the number of chips to be assembled. The two key process stages have many parallel machines of various types. A machine processes different types of MCP lots with significant setup times. We therefore should reduce the number of setups effectively while not sacrificing the on-time delivery performance significantly. We propose a scheduling strategy that first allocates the machine capacity of many parallel machines to product groups and lots depending on their production progresses appropriately and then applies known dispatching rules. We report experimental performances of the proposed methods. [Received: 21 June 2009; Revised: 03 December 2009; Accepted: 01 February 2010]

Online publication date: Wed, 22-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the European J. of Industrial Engineering (EJIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com