A probabilistic quantitative risk assessment model for fire in road tunnels with parameter uncertainty
by Qiang Meng, Xiaobo Qu
International Journal of Reliability and Safety (IJRS), Vol. 5, No. 3/4, 2011

Abstract: Fire in road tunnels can lead to catastrophic consequences in combination with tunnel safety provision failures, thus necessitating a need for a reliable and robust approach to assess tunnel risks caused by fire. In a quantitative risk assessment (QRA) model for road tunnels, uncertainty is an unavoidable component because input parameters of the model possess different levels of uncertainties which are inappropriate to be formulated by crisp numbers. In this paper, a Monte Carlo sampling-based QRA model is proposed to address parameter uncertainty of a QRA model. The tunnel risks are assessed in terms of percentile-based societal risk as well as expected number of fatalities (ENF) curve, which would facilitate tunnel managers to make decisions. A case study is carried out to demonstrate the approach.

Online publication date: Tue, 31-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com