Large eddy simulation of combustion processes under gas turbine conditions
by B. Wegner, A. Kempf, C. Schneider, A. Sadiki, M. Schafer
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 4, No. 3/4/5, 2004

Abstract: The method of large eddy simulation (LES) has a high potential to accurately predict complex turbulent flows. Gas turbine combustion systems feature a number of phenomena interacting with each other such as swirl with recirculation, complex turbulent mixing and combustion of premixed, non-premixed as well as partially premixed nature. We therefore tend to approach the simulation of real gas turbine combustors step by step. The aim of this paper is to document some of the progress made at EKT in assessing the capability of LES in flows separately exhibiting distinct features of gas turbine combustors. Some results from two configurations are presented and discussed: a non-confined isothermal swirl flow with precessing vortex core and a non-premixed bluff-body flame.

Online publication date: Mon, 10-May-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com