Investigation of flame structures in turbulent partially premixed counter-flow flames using planar laser-induced fluorescence
by S.K. Omar, D. Geyer, A. Dreizler, J. Janicka
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 4, No. 3/4/5, 2004

Abstract: This paper reports on investigations of structural turbulent flame characteristics using planar laser-induced fluorescence (PLIF) of hydroxyl (OH) radicals. Turbulent, counter-flowing methane/air flames with different equivalence ratios spanning from premixed to partially premixed are investigated. Additionally, Reynolds numbers of these configurations are varied and reach from stable to extinguishing flames. The main objective of this study is to extract topological quantities from spatial OH distributions such as area and local thickness of the OH layer, flame brush, or contours approximating the profile of the stoichiometric mixture fraction. The post-processing procedure applied to extract these quantities from single-shot OH PLIF images is described. It is shown that OH areas shrink with increasing Reynolds number whereas lengths of stoichiometric contour lines are nearly unaffected. This indicates that flame extinction is driven by large scale eddies rather than small scale wrinkling. In addition to also performed quantitative laser Doppler anemometry and Raman/Rayleigh measurements of the same flames, topological studies are helpful in viewing complex turbulent-chemistry interaction. Latter data are essential for validation purposes of large eddy simulations (LES) that predict transient flame movement and thereby spatial OH distributions.

Online publication date: Mon, 10-May-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com