Evolutionarily adjusting membership functions in Takagi-Sugeno fuzzy systems
by Tzung-Pei Hong, Wei-Tee Lin, Chun-Hao Chen, Chen-Sen Ouyang
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 5, No. 3, 2011

Abstract: Fuzzy set theory has been used more and more frequently in intelligent systems because of its simplicity and similarity to human reasoning. It usually uses a fuzzy inference system to handle new cases for making decisions or controlling actions. In the past, Takagi and Sugeno proposed a well-known fuzzy model, namely TS fuzzy model, to improve the precision of inference results. In this paper, we try to automatically adjust the membership functions appropriate for the TS fuzzy model. A GA-based learning algorithm is thus proposed to achieve the purpose. The proposed approach considers the shapes of membership functions in fitness evaluation in addition to the accuracy. The experimental results show that the proposed approach can derive the membership functions in the Takagi-Sugeno system with low errors and good shapes.

Online publication date: Tue, 21-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com