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Abstract: This paper presents a new discrete-time ergodic simulation 
model for the efficient generation of multiple time uncorrelated Rayleigh 
waveforms. It uses the inverse discrete Fourier transform (IDFT) to 
generate the transmission coefficients with only one random number 
generator. The model and its statistical characteristics are derived as a 
function of the channel power spectral density (PSD). Irrespective of the 
channel PSD shape, the proposed model will be an ergodic complex 
random process with correct ensemble averages. 
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1 Introduction 

Statistical modeling of mobile radio channels is often used for analysis and design of 
wireless communication systems. Some of these mathematical channel models have 
been accomplished in computers and used as an important tool to simulate signal 
envelope variations for mobile-radio environment analysis. As an example, Monte 
Carlo simulation of wireless communication system under fading channel requires an 
effective mathematical channel model which can efficiently reproduce the main 
statistical properties of the physical channel in a computer. Effectiveness and 
efficiency have been motivation for a large number of channel simulator works in the 
literature in the last 40 years. 
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The scattering propagation model of Clarke (1968) has been the base for some 

widely used fading channel simulators, such as the Jakes (1974) and Smith (1975) 
models. The former uses a sum of sinusoids to obtain the Rayleigh transmission 
coefficients, whereas the latter uses a frequency domain filtering of two complex 
Gaussian random processes. 

The Jakes model, as originally presented, is not able to reproduce some important 
statistical properties found in a physical mobile radio channel. The Smith model can 
reproduce them, but requires a high computational effort. Therefore, several works 
with analysis and improvement for both models have been proposed (Dent et al., 
1993; Zheng and Xiao, 2003; Xiao et al., 2002; Pop and Beaulieu, 2001; Young and 
Beaulieu, 2000; Wang and Pätzold, 2003; Iqbal et al., 2009; Alimohammad et al., 
2009). In particular, the Jakes model became statistically correct (from the point of 
view of ensemble averages) and wide-sense stationary (WSS) with the improvement 
proposed in Zheng and Xiao (2003). On the other hand, a modification in the Smith 
model algorithm, proposed in Young and Beaulieu (2000), reduced its computational 
effort by half, keeping the correct statistical properties of the model. The authors in 
Alimohammad et al. (2009) propose improvements on sum-of-sinusoids-based 
channel model for wireless radio propagation. The model uses random  
walk processes instead of random variables (RVs) for some of the sinusoid 
parameters of a time-correlated Rayleigh and Rician fading channels. Another 
method for the generation of complex Gaussian stochastic processes is the spectral 
representation described in Shinozuka and Deodatis (1991) and used by Kodzovi and 
Abdi (2003) for fading channels simulation (in its Section 2). 

This paper proposes a new discrete-time transmission coefficients model for the 
generation of multiple time uncorrelated Rayleigh waveforms. From a mathematical 
point of view, the proposed model can reproduce the main statistical properties of a 
mobile physical channel with every power spectral density (PSD) shape. From 
performance point of view, it is suitable for applications which require simulation 
with high number of samples, because it presents fast computational response. 

The model was derived as a function of the channel PSD in order to enable 
channel simulation with other PSD than the well known U shaped. Hence, models 
based on the Clarke channel PSD can be considered as a particular case of this 
model. All statistical characteristics were derived as a function of the channel PSD. 
As a result, irrespective of the channel PSD shape, the transmission coefficients from 
the model are a complex random process with correct ensemble averages, ergodic, 
and with Rayleigh envelope and uniform phase angle, which are properties of a 
physical channel. These are important characteristics of a channel simulator when the 
PSD does not follow the traditional Clarke and Aulin shapes. In addition, to perform 
a real-time uncorrelated channel, from the model point of view, every two sample 
functions are time uncorrelated. All statistical properties were also verified by 
computational simulations. 

The proposed model allows generate the transmission coefficients using only one 
random number generator. Initially, a complex random process is created within the 
frequency domain, and then the IDFT is applied to compute the transmission 
coefficients in the time domain. In fact, in order to improve computational response, 
the inverse fast Fourier transform (IFFT) has been implemented in the simulator 
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algorithm. But, the performance of IFFT is not consistent for a high and/or not a 
power of two numbers of samples. Therefore, this work presents an algorithm to 
handle the number of samples in the model. As a result, the execution time curve for 
every number of samples N fits the execution time curve for N in steps of powers of 
two (the best case for IFFT). 

The proposed model has been compared with other models in literature to show 
its effectiveness. Two recent modified versions of the Jakes and Smith models, 
named as modified Smith model (Young and Beaulieu, 2000) and modified Jakes 
model (Zheng and Xiao, 2003) were analysed. The results, presented by the authors 
in Silva et al. (2004) and reproduced here, show that IDFT models require less 
computational effort than the sum of sinusoids models and show they match the 
statistical properties of a real channel. 

This paper is composed as follows. Section 2 presents a review of the channel 
mathematical models and its statistical properties. In Section 3 the proposed model is 
described and analysed. Section 4 presents some computational aspects besides 
Clarke and Aulin discrete models. Simulations results are presented in Section 5. 
Finally, Section 6 summarises the main conclusions. Further mathematical details are 
justified in three appendices. Appendix D lists the main mathematical symbols used 
in this paper. 

2 Review of channel mathematical models 

Consider the scattering propagation model of Aulin (1979) shown in Figure 1, which 
is a generalisation of the Clarke (1968) model. At every point, the received signal is 
composed by a superposition of M plane waves, where the nth wave is arriving with 
an azimuth angle αn, an elevation angle βn and a carrier phase angle φn, which are 
random for different receiving positions. In this model, the transmission coefficient is 
given by (Aulin, 1979) 

( ) ( )

1

1 n n

M
j t

n

c t e
M

ω φ+

=

= ∑  (1) 

where 1 M  is the common amplitude of the M waves, ωn = ωmcosαncosβn is the 
Doppler frequency shift of the nth wave, ωm = 2πfm, fm = v/λ is the maximum 
Doppler frequency shift, λ is the wave length of ωc, and v the mobile constant speed. 

If αn is uniformly distributed in [0, 2π), provided that M is sufficiently large and 
φn, αn and βn are independent RVs and also independent of each other, then c(t) is a 
complex Gaussian random process in conformity with the central limit theorem CLT) 
with the following ensemble averages (Aulin, 1979): 

( ){ } 0E c t =  (2a) 

( ) ( ) ( ){ } ( ) ( )*
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1Im Im
2

g E c t c t

E c t c t R

τ τ

τ τ

= +

= + =
 (2c) 

( ) ( ){ } ( ){ }{ }Re Im 0h E c t c tτ τ= + =  (2d) 

where J0(.) is the Bessel function of the first kind and zero order, and pβ(β) is the 
probability density function (pdf) of the RV β. 

Figure 1 Scattering propagation model 

βn

αn

v

direction of the
nth component wave

z1

z2

z3
Δs

 

From (2), one can conclude that c(t) is WSS (assuming that pβ(β) is time invariant); 
|c(t)| (at every time t) is a Rayleigh RV; ∠c(t) is a uniform RV in the interval [0, 2π) 
and the real and imaginary parts of c(t) are independent random processes. Moreover, 
it can be shown that all time averages of every sample function of c(t) are equal to 
the correspondent ensemble averages, i.e., c(t) is ergodic. 

The PSD of c(t) is F{R(τ)}. In general, to carry out this Fourier transform is not 
straightforward. However, considering 

( ) max
max

cos ,
2sin 2
0,

p
elsewhere

β

β πβ β
ββ

⎧ ≤ ≤⎪= ⎨
⎪⎩

 (3) 

which can be a realistic pdf for small βmax, the resulting PSD is given by (Aulin, 
1979) 
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where A = (2fmsinβmax)–1; B = fmcosβmax and βmax is the highest elevation angle. 
In the Clarke (1968) model, the component waves are traveling horizontally, i.e., 

βn = 0, for every n, and pβ(β) = δ(β), where δ(.) is the Dirac delta function. 
Consequently, 

( ) ( )0 mR Jτ ω τ=  (5) 

( ) ( ){ }
( )

0 2

1 ,
1

c m m

m m

S f F J f f
f f f

ω τ
π

= = ≤
−

 (6) 

The remaining ensemble averages in (2) do not change. 
Additionally, the level-crossing rate (LCR) NR, and the average fading duration 

(AFD) τR, in a Rayleigh fading channel are given by (Jakes, 1974) 
2

2R mN f e ρπ ρ −=  (7) 

2
1

2R
m

e
f

ρ
τ

π ρ
−

=  (8) 

where ρ = l/lrms, l is a specified signal level, 22rmsl σ= , and 2σ2 is the mean square 
value of c(t). 

3 Discrete transmission coefficients model 

3.1 Model 

Let cT(t), the truncated version of the transmission coefficients c(t) (suitable for 
computational purposes), be given by 

( ) ( ) , 2 2
0, otherwiseT
c t T t T

c t
− ≤ ≤⎧

= ⎨
⎩

 

Assuming that the transmission coefficients are ergodic in autocorrelation function 
(e.g., as in the Clarke and Aulin models), its PSD becomes (Couch, 2006) 

( )
( ) 2

lim T
c T

C f
S f

T→∞

⎛ ⎞
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⎜ ⎟
⎝ ⎠

 (9) 

where ( ) ( ){ }T TC f F c t= . In this case the PSD of cT(t) is given by 

( )
( ) 2
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Besides, if S(f) is the normalised PSD of cT(t), i.e., 

( ) 1S f df
+∞

−∞

=∫  (11) 

then, 

( ) ( )22TS f S fσ=  (12) 

Now, let ϕ(f) be the phase angle of CT(f). Then, by using (10) and (12), CT(f) 
becomes 

( ) ( ) ( ) ( ) ( )22j f j f
T TC f C f e TS f eϕ ϕ= = σ  (13) 

Finally, the truncated version of the transmission coefficients is obtained from 

( ) ( ){ } ( ) ( ){ }1 2 12 j f
T Tc t F C f T F S f e ϕ− −= = σ  (14) 

where F–1{·} is the inverse Fourier transform. 
If the PSD and ϕ(f) are known, equation (14) shows that it is possible to generate 

a truncated version of the transmission coefficients for simulation purposes. In this 
case one can assume that the PSD of cT(t) approximates the channel PSD. This 
approximation improves by increasing the observation interval T. In particular, it will 
be assumed in this work that ϕ(f) is an independent and uniform RV in the interval 
[0, 2π). As a result, it will be shown that the ensemble averages of the random 
process cT(t), obtained from (14), are only function of the channel PSD. Besides, the 
equivalent random processes |cT(t)| and ∠cT(t) are Rayleigh and uniform in the 
interval [0,2π), respectively. 

In order to achieve computational synthesis, it is necessary to transform (14) in a 
discrete-time equation. Let c[n] be a complex sequence of length N, which represents 
cT(t) sampled with a sampling period Ts = 1/fs seconds. The relationship between 
|CT(f)| [which is equal to |F{cT(t)}|] and its frequency sampled equivalent version 
|C[k]| = |DFT{c[n]}|, where DFT{.} is the discrete Fourier transform, is given by 
(Oppenheim et al., 1999) 

[ ] ( ) ( )21 1 2T
s s

C k C kf TS kf
T T

σΔ Δ= =  (15) 

( ) [ ]2 22 2
s

N S kf NS k
T

σ σΔ= =  (16) 

where fΔ = 1/T Hz is the frequency interval between kth and (k + 1)th samples,  
T = NTs is the observation interval in (9) and 

[ ] ( )1

s
S k S kf

T Δ=  (17) 
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Finally, the discrete-time transmission coefficients model is given by 

[ ] [ ]{ } [ ]{ }
[ ] ( )

2

12
2
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2 , 0,1,..., 1
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N
j kn N

k

c n C k N S k e

S k e n N
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ϕ

ϕ π

σ

σ −
+

=

= =

= = −∑
 (18) 

where {ϕk} are independent RVs with uniform distribution in the interval [0, 2π). 
The transmission coefficients synthesis block diagram is shown in Figure 2, 

where ϕ [k] = {ϕ0, ϕ1, …, ϕk, …, ϕN–1}. 

Figure 2 Proposed model diagram 
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3.2 Statistical properties 

Equation (18) shows a sum of independent RVs. Hence, from CLT, c[n] is a complex 
Gaussian random process. The ensemble averages of c[n], computed in Appendix A, 
are function of the discrete normalised PSD channel S[k], where 

[ ]{ } 0E c n =  (19a) 

[ ] [ ]{ }22 IDFT , 0R m S k m Nσ= ≤ <  (19b) 

[ ] [ ]{ }{ }2 Re IDFT , 0g m S k m Nσ= ≤ <  (19c) 

[ ] [ ]{ }{ }2 Im IDFT , 0h m S k m Nσ= ≤ <  (19d) 

It should be noted that g[m] (which is equal to gR[m] and gI[m]) and h[m] are  
the auto and cross-correlation of the real and imaginary parts, respectively, and  
R[m] is the autocorrelation function. The range of values for m in (19) can also be  
–N/2 ≤ m < N/2 (N even), because R[m] [see the sum in (A2)] is a periodic sequence 
with period N. 
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From the statistical averages in (19), it can be concluded that c[n] is WSS. 
Moreover, the discrete equivalent random processes |c[n]| and ∠c[n] have Rayleigh 
and uniform distributions in the interval [0, 2π), respectively (Papoulis, 2001). 

All time averages of c[n] (computed in Appendix B) for every sample function 
are equal to the corresponding ensemble averages, irrespective of S[k]. As a result, 
irrespective of the channel PSD shape, the proposed discrete transmission 
coefficients model c[n] is an ergodic random process. Furthermore, the time  
cross-correlation variance between two sample functions approaches zero as the 
number of samples or the simulation time increases (Appendix B, item f). 

3.3 Model applications 

Considering S[k] representing the PSD of the Aulin model, the ensemble averages for 
the proposed model can be calculated using (19) with pβ(β) = δ(β)and N → ∞, as 
follows 

[ ] ( ) ( )22 cos0R m J mT p dm s
π

σ ω β β ββ
π

= ∫
−

 (20a) 

[ ] [ ]1
2

g m R m=  (20b) 

[ ] 0,h m m= ∀  (20c) 

It can be verified that the discrete-time expressions founded in (20) are equivalent to 
the continuous-time ones in (2). 

The same reasoning can be applied when the Clarke scattering propagation model 
(Clarke, 1968) is used for setting the PSD in the proposed model. From (20) with 
pβ(β) = δ(β) (waves traveling horizontally) and –N/2 ≤ m < N/2, it follows 

[ ] ( )2
02 m sR m J mTσ ω=  (21a) 

[ ] [ ]1
2

g m R m=  (21b) 

[ ] 0,h m m= ∀  (21c) 

which are the well-known ensemble averages of the Clarke model. 
Figure 3 shows two accomplishments of (19b) [see (A2)] for –103 ≤ m ≤ 103 and 

0 ≤ k ≤ 5 × 104, with Aulin and Clarke PSD being compared to (20a) and (21a). The 
approximation error is very small and is due to the finite range of values used for k. 

From (21), (A3) and (A5) (when the Clarke model is used for setting the PSD) 
and from Jakes (1974), it follows that the LCR and AFD for the proposed model are 
in agreement with (7) and (8) respectively, when N → ∞. Simulation results, shown 
in Figure 12, illustrate the above mentioned results. 
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Figure 3 Autocorrelation functions for –103 ≤ m ≤ 103, f m T s  = 0.025, τ  = mT s  and  
2σ2 = 1; (a) R[m] from (20a) with pβ(β) from (3), and βmax = 40° versus R[m] from 
(19b) with S[k] from (24) (b) R[m] from (21a) versus R[m] from (19b) with S[k] 
from (22) 
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(b) 
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4 Some computational aspects 

4.1 Using the IFFT 

In order to save execution time, the IDFT in (18) should be computed using some 
suitable IFFT algorithm. In particular, the Frigo FFT and IFFT algorithms (Clarke, 
1968), which are based on the Cooley-Tukey (1965) algorithm, compute the DFT and 
IDFT more efficiently. These algorithms are used by the MATLAB® package and 
they can also be found in the C language. 

The execution time for the Frigo algorithm depends on the length N of the 
sequence. It is fastest when N is a power of two and, besides, it is almost as fast when 
N is a product of small prime factors. However, it is several times slower when either 
N has large prime factors or N is a prime number. Thus, before computing the IFFT, 
in order to improve the algorithm computation time, it is possible to quantize N in a 
number Nt, which must be either a power of two, or a number represented by the 
product of small prime factors. A routine to implement this procedure is illustrated in 
Figure 4. It should be emphasised that: 

• Nt ≥ N always 

• Nt is the nearest number to N which is either a power of two or a number with all 
prime factors ≤ factor_min, and where Nt is also a multiple of 104 (e.g., to 
decrease the number of searches when N is a large number). 

Figure 4 Procedure to transform N in Nt 

 

Note: max(v) returns the largest element in the vector v; factor(N) returns a vector 
containing the prime factors of N; ⎡x⎤ rounds x to the nearest integer ≥ x. 
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In the channel simulator algorithm, the IFFT is applied to an Nt length sequence, but 
the length of the resultant sequence must be N. Therefore, Nt – N excess samples are 
nullified subsequent to the IFFT. 

A channel simulator algorithm performance, using the procedure in Figure 4, with 
factor_min = 13, is illustrated in Figure 5. Note that whenever the value of N is in the 
considered range, the corresponding execution time is very near the execution time 
curve for N as power of two (i.e., the best case). 

Figure 5 Normalised execution time averaged over 30 simulations with a set of six sample 
functions 

 

4.2 Clarke and Aulin PSDs 

The Clarke discrete PSD can be obtained by using (6) and (17), as follows 
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and ⎣x⎦ rounds x to the nearest integer ≤ x. In order to assure zero time average [i.e., 
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not only when N → ∞ [see (B1)] but also when N is finite], without loss of 
generality, it is assumed S[k = 0] = 0. Besides, S[k = km] is found by an interpolation 
process as described in Appendix C. 

With an analogous procedure, the Aulin discrete PSD can be obtained by using 
(4) and (17) in conformity with 

[ ]

[ ]

2
2

max
1

2

0, 0

2cos 1
sin ,

2
1

1
1 ,

0,
, 1

m

S

m

b

b m
s

m m

m

k

kf
fA

T kf
fS k

k k

A k k k
T

k k N k
S N k N k k N

β
π

π

Δ

−

Δ

=⎧
⎪

⎛ ⎞⎛ ⎞⎪ ⎛ ⎞⎜ ⎟⎜ ⎟− −⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎪ −⎜ ⎟⎜ ⎟⎪ ⎛ ⎞⎜ ⎟⎜ ⎟⎪ − ⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎝ ⎠= ⎨
⎪ ≤ <
⎪
⎪ ≤ ≤⎪
⎪

< < −⎪
⎪ − − ≤ ≤ −⎩

 (24) 

where S[0] = 0 again, km is given by (23) and 

b
s

Bk N
f

⎡ ⎤
= ⎢ ⎥

⎢ ⎥
 (25) 

and where ⎡x⎤ rounds x to the nearest integer ≥ x. 
In order to obtain S[k] from other theoretical PSD S(f) (e.g., symmetrical or 

asymmetrical), equally frequency spaced samples are taken from S(f) (considering  
0 ≤ f < fs) as described in procedures (22) and (24). 

5 Simulation results 

In addition to the complete theoretical analysis shown in this work, the proposed 
transmission coefficients model has also been exhaustively tested and validated from 
the numerical standpoint, through several simulations. Figures 6 to 14 present some 
simulation results obtained from the output of the channel simulator. The proposed 
model has been tested and compared (Silva et al., 2004) with two other models 
derived from Clarke PSD: the first one obtained from the Jakes model and defined in 
Zheng and Xiao (2003), named here as modified Jakes model and the other one, the 
Smith model defined in Young and Beaulieu (2000), named here as modified Smith 
model. Figures 6 to 9 present the comparison between the three models. The 
simulation parameters are: 2σ2 = 1, fmTs = 0.025, N = 5 × 104 for all models and eight 
oscillators for modified Jakes model (as suggested in Zheng and Xiao, 2003). 
Numerical pdfs were obtained through histograms with 30 columns. The modified 
Smith model and the proposed model present similar and satisfactory results for all 
cases, as shown in Figures 6 to 8. It can be verified that the autocorrelation curve 
(Figure 8) of the proposed model fits the reference curve slightly better than the 
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modified Smith model. Note also that the modified Jakes model presents some 
disagreements for all results. This is a direct consequence of the small number of 
oscillators used in this model. The normalised average execution time in Figure 9 
shows that the two IDFT models are approximately three times faster than the 
modified Jakes model, even considering the number of oscillators as small as eight. 

Figures 10 to 14 present some additional simulation results only for the proposed 
model. All simulations were accomplished with the following parameters: βmax = 0° 
(Clarke PSD), βmax = 40° (Aulin PSD), 2σ2 = 1, N = 5 × 104 and fmTs = 0.025. Note 
that all numerical results are in agreement with the expected theoretical values. 
Figure 10 shows the cross-correlation of the real and imaginary parts of c[n]. In this 
figure, and in the sequel τ = (n2 – n1)Ts = mTs designates the temporal delay between 
the samples sequences c[n]. The values are close to zero, so they can be considered 
as time uncorrelated. Figure 11 shows the autocorrelation of c[n] generated with 
Aulin PSD. Note that this simulation result coincides with the reference value. Figure 
12 shows the level crossing rate and AFD considering Clarke PSD. Again, the 
simulated results and those obtained with equations (7) and (8) coincide. Figure 13 
shows the cross-correlation Cc[m] of two sample functions generated with Clarke 
PSD. The results for the Aulin PSD are similar. From these results it can be inferred 
that in a multipath environment, every two multipath components (e.g., each sample 
function of c[n] regarded as a multipath component) can be considered time 
uncorrelated. In this figure, 2

cσ  denotes the calculated variance (Appendix B, item f) 
and agrees with those obtained in Figure 14, which shows the variance of Cc[m] 
using Clarke and Aulin PSDs. This figure confirms that 2

cσ  approaches zero with 
increasing N. 

Figure 6 Probability density functions of a single sample function 

 

Notes: ( ){ }( ) ( ){ }( ){ }2 var Re ;var Im .c t c tσ =  Rayleigh pdf with σ2 = 0.5. 
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Figure 7 Probability density of phase angle 

 

Note: 1/(2π) 

Figure 8 Time-autocorrelation function; c[n] generated using Clarke PSD 
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Figure 9 Normalised execution time (adopting as reference the Modif. Jakes greatest value) 
averaged over 30 simulations with a set of six sample functions 

 

Note: k and N =[start:increment:end] 

Figure 10 Cross-correlation between the real and imaginary parts of c[n] generated with 
Clarke PSD 
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Figure 11 The autocorrelation of c[n], generated with Aulin PSD, is compared with a 
reference calculated using (4) and the Bessel function of the first kind J0(.) 

 

Figure 12 LCR and AFD (Clarke PSD) 
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Figure 13 Cross-correlation of two sample functions generated with Clarke PSD 

 

Figure 14 Variance of Cc[m] i.e., 2
cσ ) using Clarke and Aulin PSDs. 

 

6 Conclusions 

A new discrete-time statistical model for simulation of multiple uncorrelated 
Rayleigh waveforms was presented. The model and its statistical characteristics were 
derived as a function of the channel PSD. It was verified that, irrespective of the 
channel PSD shape, this model is ergodic, and its ensemble averages agree with 
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those found in a physical mobile radio channel. This characteristic is of great 
importance for transmission coefficients generation where the PSD does not follow 
the traditional Clarke and Aulin shapes. In addition, only a single random number 
generator is required to generate the transmission coefficients, which is an advantage 
over the Smith (1975) model. However, the computational complexity in order to 
generate the sequence ejϕk in the proposed model is approximately twice as much as 
the necessary to generate N complex Gaussian numbers reported in Young and 
Beaulieu (2000), resulting in a similar final computational complexity for the two 
models. Nevertheless, the proposed model is more general than the one presented in 
Young and Beaulieu (2000) because it can be used for every PSD shape. 

Comparative results for Clarke PSD show that the IDFT models require smaller 
computational effort. Besides, the proposed model presents results slightly better 
than the modified Smith model concerning the autocorrelation function. 
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Appendix A 

Ensemble averages of c[n] 

a mean value 
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c autocorrelation function of Re{c[n]} 
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where m = n2 – n1. For S[k] real and even (as Clarke model), 
2
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d Autocorrelation function of Im{c[n]} 
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e cross-correlation of Re{c[n]} and Im{c[n]} 
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But, E{c*[n1]c*[n2]} = 0 and E{c[n1]c[n2]} = 0. Then, 
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For S[k] real and even, h[m] = 0. 
In summary, the ensemble averages agree with (19). 

Appendix B 

Time averages of c[n] 

Let ca[n] be the ath sample function of the random process c[n]. 

a time average 
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b time autocorrelation function 
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 For large N, [ ] [ ] [ ].a ac n c n m R m∗⎡ ⎤+ ≅⎣ ⎦  

c time cross-correlation of Re{ca[n]} and Im{ca[n]} 

[ ]{ } [ ]{ }

[ ] [ ]( ) [ ] [ ]( )

[ ] ( ) ( )( )
[ ]{ }{ }

1

0
12

2 2

0
2

Re Im

1lim
4

lim
2

lim Im IDFT

a a

N

a a a aN
n
N

j km N j km N

N
k

N

c n c n m

j c n c n c n m c n m
N

j S k e e
N

S k

π πσ

σ

−
∗ ∗

→∞
=
−

−

→∞
=

→∞

⎡ ⎤+⎣ ⎦

⎡ ⎤= + + − +⎣ ⎦

= −

=

∑

∑
 (B3) 



   

 

   

   
 

   

   

 

   

    A simulation model for generation of multiple uncorrelated Rayleigh 99    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

 For large N, [ ]Re{ [ ]}Im{ [ ]} [ ].a ac n c n m h m+ ≅  

d time autocorrelation of Re{ca[n]} 
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 For large N, [ ]Re{ [ ]}Re{ [ ]} [ ].a ac n c n m g m+ ≅  

e time autocorrelation of Im{ca[n]} 
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 For large N, [ ]Im{ [ ]}Im{ [ ]} [ ].a ac n c n m g m+ ≅  

f time cross-correlation of two sample functions 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] ( )(
( )

[ ] [ ] ( )( )
[ ] ( )

, ,

, ,

, ,

1

0
1 12

2

0 0
1

2

0
1 12

2

0 0
12

2

0

1lim

2lim

1

2lim

2lim

b z a k

b z a k

b k a k

N

c a b a bN
n

N N
j j zm N

N
k z

N
j z k n N

n
N N

j j zm N

N
k z
N

j j km N

N
k

C m c n c n m c n c n m
N

S k S z e e
N

e
N

S k S z e e
N

S k e e
N

ϕ ϕ π

π

ϕ ϕ π

ϕ ϕ π

σ

σ

σ

−
∗ ∗

→∞
=

− −
−

→∞
= =

−
−

=

− −
−

→∞
= =
−

−

→∞
=

⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦

=

⎞
⎟⎟
⎠

=

=

∑

∑∑

∑

∑∑

∑

 (B6) 

So the mean and variance of Cc[m] are given by 
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Appendix C 

Interpolation procedure 

Let Am be the area below the curve S(f) from (km – 1) to kmfΔ as shown in Figure C(1). 
Considering the area from 0 to kmfΔ approximately 1/2 [from (11)] and approximating 
Am by a rectangle of height S(kmfΔ) and width fΔ, the following relation can be 
obtained for k = km 

( )
( )

( )
1

0

1
2

mk f

mS f df S k f f
Δ−

Δ Δ− ≅∫  (C1) 

Now, one can show by using and solving (C1) S(kmfΔ) that 
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and, substituting S[km]Ts = S(kmfΔ) in (C2), one can obtain S[km] in (22). 
Similar results (based in the exact area from 0 to kmfΔ) are mentioned in Smith 

(1975) and Young and Beaulieu (2000) for the magnitude spectrum. 
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Figure C1 Interpolation procedure for the Clarke PSD 

Am
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0 fΔ 2 fΔ ( )1mk fΔ− mk fΔ f

fΔ

 

In fact, the range of kmfΔ can be obtained from (23): fm – fΔ < kmfΔ ≤ fm. In practice, the 
difference between kmfΔ and fm is negligible. 
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Appendix D 

List of mathematical notation 

fm maximum Doppler frequency shift (Hz) 
fs sampling frequency of the sequence c[n] 

fΔ frequency interval between kth and (k + 1)th samples 

J0( ) Bessel function of the first kind and zero order 
M number of plane waves from the received signal 
N number of samples 
NR LCR in a Rayleigh fading channel 
Nt quantized number of samples 

pβ probability density function of the random variable β 
T time window for the truncated version of transmission coefficients 
Ts sampling period for the sequence c[n] 
v mobile speed 

αn azimuth angle of the nth arriving wave 

βn elevation angle of the nth arriving wave 

βmax the highest elevation angle (Aulin’s model) 

δ(.) Dirac delta function 

φn phase angle of the nth arriving wave 

{ϕk} independent random variables with uniform distribution 

λ carrier wave length 

ρ an specified signal level to compute the AFD 

σ2 transmission coefficients variance 
2
cσ  computed variance of the cross-correlation from two sample functions 

τ time shift of two samples functions 

τR average fading duration in a Rayleigh fading channel 

ωm maximum Doppler frequency shift (rad/s) 

ωn Doppler frequency shift of the nth arriving wave 

 


