Study of agglomeration in 3.5 MW AFBC using rice husk particles
by Ravi Inder Singh, S.K. Mohapatra, D. Gangacharyulu
International Journal of Renewable Energy Technology (IJRET), Vol. 2, No. 2, 2011

Abstract: The combustion of rice husk in fluidised bed combustors seems to be an attractive possibility for power generation in the future, keeping in view the waste disposal problems and the reduction of greenhouse gases. In commercial installations, the occurrence of agglomeration is still one of the main reasons for unscheduled outrages. In this paper, a review of agglomeration mechanism and its prevention has been made by considering the case study of a 3.5 MW rice husk-based power plant situated at Nahar Spinning Mills Ltd. (NSML), Ludhiana, Punjab, India. Proximate, SEM analysis and quantitative elementary analysis of agglomerates samples taken from plant has been done and corrective measures have been suggested. TGA of rice husk taken from the plant has also been done to correlate it with agglomeration. The agglomeration and defluidisation in 3.5 MW NSML Ludhiana using rice husk particles is caused by high potassium content in the fuel. It is not possible to measure localised temperature, which may exceed 900-1000°C, while the plant is running, which may cause agglomeration at above plant. Refreshment of bed with fresh particles and lowering bed temperature are the key measures to prevent agglomeration.

Online publication date: Sat, 21-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Renewable Energy Technology (IJRET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com