Synthesis of vertically aligned carbon nanotubes and diamond films on Cu substrates for use in high-power electronic devices
by Nguyen Van Chuc, Ngo Thi Thanh Tam, Nguyen Van Tu, Phan Ngoc Hong, Than Xuan Tinh, Tran Tien Dat, Phan Ngoc Minh
International Journal of Nanotechnology (IJNT), Vol. 8, No. 3/4/5, 2011

Abstract: Currently, most of the vertically aligned carbon nanotubes (VA-CNTs) and diamond films are mainly synthesised on flat silicon (Si) substrate. However, to achieve thermal dissipation in high-power electronic devices (HPEDs), the VA-CNTs and diamond films need to be attached to thermal dissipation metal substrates (like Cu, Ag, Al, etc.). In this paper, the fabrication process of the VA-CNTs and diamond films on Cu substrate is reported in detail. The VA-CNTs were synthesised by the thermal chemical vapour deposition (CVD) method. The VA-CNTs on Cu substrates were fabricated by two different methods: directly growing the VA-CNTs using thin catalytic metal layers such as Fe/Al or Cr/Al as a catalyst; transferring the VA-CNTs film that was pre-grown on Si substrate to Cu substrate. The diamond films were also directly grown on the Cu substrate by microwave plasma chemical vapour deposition (MPCVD). The grown VA-CNTs and diamond films were tested as the thermal dissipation media on a 0.5W InGaN LED chip. The VA-CNTs and diamond films greatly increased input current of the LED by more than 500 mA and 350 mA without reaching saturation. This is higher compared with that of the device packaged using normal commercial silver thermal paste. Initial experiment results on the LED demonstrated that the VA-CNTs and diamond films greatly improve the light's output power and that they are optimal choices for the thermal dissipation of HPED.

Online publication date: Fri, 21-Jan-2011

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com