The slowness principle: SFA can detect different slow components in non-stationary time series
by Wolfgang Konen, Patrick Koch
International Journal of Innovative Computing and Applications (IJICA), Vol. 3, No. 1, 2011

Abstract: Slow feature analysis (SFA) is a bioinspired method for extracting slowly varying driving forces from quickly varying non-stationary time series. We show here that it is possible for SFA to detect a component which is even slower than the driving force itself (e.g., the envelope of a modulated sine wave). It depends on circumstances like the embedding dimension, the time series predictability, or the base frequency, whether the driving force itself or a slower subcomponent is detected. Interestingly, we observe a swift phase transition from one regime to another and it is the objective of this work to quantify the influence of various parameters on this phase transition. We conclude that what is perceived as slow by SFA varies and that a more or less fast switching from one regime to another occurs, perhaps showing some similarity to human perception.

Online publication date: Sat, 21-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Innovative Computing and Applications (IJICA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com