A comprehensive model on the transport phenomena during gas metal arc welding process
by F.L. Zhu, H.L. Tsai, S.P. Marin, P.C. Wang
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 4, No. 2, 2004

Abstract: A comprehensive mathematical model and the associated numerical technique have been developed to simulate the coupled, interactive transport phenomena between the electrode (droplets), the arc plasma, and the workpiece (weld pool) during a stationary axisymmetric gas metal arc welding process. The simulation involves arc plasma generation, electrode melting, droplet formation, detachment, transfer, and impingement onto the workpiece, and weld pool dynamics. During transfer from the tip of the electrode to the workpiece, the droplet subjects to gravity, electromagnetic force, surface tension, and arc plasma drag force. Transient temperature and velocity distributions of the arc plasma, shapes of the electrode, droplet, and weld pool, and heat transfer and fluid flow in the weld pool are all calculated in a single, unified model. The predicted solidified weld bead shape compares favourably with the experimental result.

Online publication date: Wed, 24-Dec-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com